
Evaluation of an Adaptive Scheduling Strategy for 
Master-Worker Applications on Clusters of Workstations 

Elisa Heymann1, Miquel A. Senar1, Emilio Luque1 and Miron Livny 2 

1 Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius 
Universitat Autònoma de Barcelona 

Barcelona, Spain 
{e.heymann, m.a.senar, e.luque}@cc.uab.es 

 
2 Department of Computer Sciences 
University of Wisconsin– Madison 

Wisconsin, USA  

miron@cs.wisc.edu 

Abstract*. We investigate the problem arising in scheduling parallel 
applications that follow a master-worker paradigm in order to maximize both 
the resource efficiency and the application performance. We propose a simple 
scheduling strategy that dynamically measures application execution time and 
uses these measurements to automatically adjust the number of allocated 
processors to achieve the desirable efficiency, minimizing the impact in loss of 
speedup. The effectiveness of the proposed strategy has been assessed by means 
of simulation experiments in which several scheduling policies were compared. 
We have observed that our strategy obtains similar results to other strategies 
that use a priori information about the application, and we have derived a set of 
empirical rules that can be used to dynamically adjust the numbe r of processors 
allocated to the application.  

1. Introduction 

The use of loosely coupled, powerful and low -cost commodity components (PCs or 
workstations, typically) connected by high -speed networks has resulted in the 
widespread usage of a technology pop ularly  called cluster computing [1]. The 
availability of such clusters made them an appealing vehicle for developing parallel 
applications. However, not all parallel programs that run efficiently in a traditional 
parallel supercomputing environment can be moved to a cluster environment without 
significant loss of performance. In that sense, the Master-Worker paradigm is 
attractive because it can achieve similar performance in both environments as no high 
communication performance is usually required from the network infrastructure [2].  

In this paradigm, a master process is responsible basically for distributing tasks 
among a farm of worker processes. Moreover, it is a good example of adaptive 
parallel computing because it can respond quite well to a scenario where applications 
are executed by stealing idle CPU cycles (we refer to these environments as non-
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dedicated clusters). The number of workers can be adapted dynamically to the number 
of available resources in such an opportunistic environment so that, if new resources 
appear they are incorporated as new workers for the application.  

However, the use of non-dedicated clusters introduces the need for complex 
mechanisms such as resource discovery, resource allocation, process migration and 
load balancing.  In the case of master-worker applications, the overhead incurred in 
discovering new resources and allocating them can be significantly alleviated by not 
releasing the resource once the task has been completed. The worker will be kept 
alive at the resource waiting for a new task. However, by doing so, an undesirable 
scenario may arise in which some workers may be idle while other workers are busy. 
This situation will result in a poor utilization of the available resources in which all 
the allocated workers are not kept usefully busy and, therefore, the application 
efficiency will be low. In this case, the efficiency may be improved by restricting the 
number of allocated workers. 

If we consider the execution time, a different criteria will guide the allocation of 
workers because the more workers allocated for the application the lower the total 
execution time of the application. Then, the speedup of the application directly 
depends on the allocation of as many workers as possible. 

In general, the execution of a master-worker application implies a trade-off 
between the speedup and the efficiency achieved. On the one hand, our aim is to 
improve the speedup of the application as new workers are allocated. On the other 
hand, we want to also achieve a high efficiency by keeping all the allocated workers 
usefully busy.  

Obviously, the performance of master-worker applications will depend on the 
temporal characteristics of the tasks as well as on the dynamic allocation and 
scheduling of processors to the application. So, in this work we consider the problem 
of maximizing the speedup and the efficiency of a master-worker application through 
both the allocation of the number of processors on which it runs and the scheduling of 
tasks to processors during runtime. We address this goal by first proposing a 
generalized master-worker framework which allows adaptive and reliable 
management and scheduling of master-worker applications running in a cluster 
composed of opportunistic computing resources. Secondly, we propose and evaluate 
by simulation a scheduling strategy that dynamically measures application efficiency 
and task execution times to control the assignment of tasks to workers.  

The rest of the paper is organized as follows. Section 2 presents the model of the 
Master-Worker applications that we are considering in this paper. Section 3 gives a 
more precise definition of the scheduling problem, introduces our scheduling policy 
and reviews some related work. Section 4 presents some simulation results obtained 
in the evaluation of the proposed strategy , by comparing our policy with other 
scheduling policies. Section 5 summarizes the main results presented in this paper. 

2. The model for master-worker applications  

 In this work, we focus on the study of applications that follow a Master-Worker 
model that has been used to solve a significant number of problems such as Monte 
Carlo simulations [3] and material science simulations [4]. In this generalized master-



 

worker model, the master process iteratively solves a batch of tasks. After completion 
of one task, the master proces s may perform some intermediate computations with the 
partial result obtained by the task. Subsequently, when the complete batch of tasks is 
finished the master may carry out some additional processing. After that, a new batch 
of tasks is assigned to the Master and this process is repeated several times until 
completion of the problem, that is, K cycles (which are later referred as iterations).  

As can be seen in fig. 1,  we are considering a group of master-worker applications 
with an iterative behavior. In these iterative parallel applications a batch of parallel 
tasks is executed K times (iterations). Workers execute Function (task) and 
PartialResult is collected by the master. The completion of a given batch induces a 
synchronizat ion point in the iteration loop which facilitates also the collection of job’s 
statistics in the Master process. 

 
 
 
 
 
 
 

Figure  1. A model for generalized Master-Worker applications. 

In addition to these characteristics, empirical evidence has shown that, for a wide 
range of applications, the execution of each task in successive iterations tends to 
behave similarly, so that the measurements taken for a particular iteration are good 
predictors of near future behavior [4]. In the rest of the paper we will investigate to 
what extent  an adaptive and dynamic scheduling mechanism may use historical data 
about the behavior of the master-worker application to improve its performance in an 
opportunistic environment. 

3. Challenges for scheduling of Master-Worker applications 

In this section we present the scheduling problem adopted in this work and we 
present also our proposed policy to solve it.  

 
3. 1 Problem statement and related work  

Efficient scheduling of a master-worker application in a cluster of distributively 
owned resources should provide answers to the following questions: 
• How many workers should be allocated to the application? A simple approach 

would consist of allocating as many workers as tasks are generated by the 
application at each iteration. However, this policy will result, in general, in poor 
resource utilization because some workers may be idle if they are assigned a 
short task w hile other workers may be busy if they are assigned long tasks. 

• How should tasks be assigned to the workers? When the execution time incurred 
by the tasks of a single iteration is not the same, the total time incurred in 

Initialization 
Do 
 For task = 1 to N 
  PartialResult  =  +   Function (task) 
 end 
 act_on_batch_complete( ) 
while  (end condition not met). 
 



 

completing a batch of tasks strongly depends on the order in which tasks are 
assigned to workers.  

We evaluate our scheduling strategy by measuring the efficiency and the total 
execution time of the application. 

Resource efficiency [5] for n workers is defined as the ratio between the amount of 
time workers have actually spent doing useful work and the amount of time workers 
were able to perform work, i.e. the time elapsed since worker i is alive until it ends 
minus the amount of time that worker i is suspended. 

Execution Time is defined as the time elapsed from when the application begins its 
execution until it finishes, using n workers. 

The problem of scheduling master-worker applications on cluster environments has 
been investigated recently in the framework of middleware environments that allow 
the development of adaptive parallel applications running on distributed clusters. 
They include NetSolve [6], Nimrod [7] and AppLeS [5]. NetSolve and Nimrod 
provide APIs for creating task farms that can only be decomposed by a single bag of 
tasks. Therefore, no historical data can be used to allocate workers. The AppLeS 
(Application-Level Scheduling) system focuses on the development of scheduling 
agents for parallel applications but in a case-by-case basis, taking into account the 
requirements of the application and the predicted load and availability of the system 
resources at scheduling time. 

There are other works in the literature that have studied the use of parallel 
application characteristics by processor schedulers of multiprogrammed 
multiprocessor systems, typically with the goal of minimizing average response time 
[8]. The results from these studies are not directly applicable in our case because they 
were focussed on the allocation of jobs in shared memory multiprocessors without 
considering the problem of task scheduling within a fixed number of processors. 
However, their experimental results also confirm that iterative parallel applications 
usually exhibit regular behaviors that can be used by an adaptive scheduler. 

3. 2 Proposed scheduling policy 

Our adaptive and dynamic scheduling strategy employs a heuristic-based method 
that uses historical data about the behavior of the application.  It dynamically collects 
statistics about the average execution time of each task and uses this information to 
determine the order in which tasks are assigned to processors. Tasks are sorted in 
decreasing order of their average execution time. Then, they are assigned dynamically 
to workers in a list-scheme, according to that order. At the beginning of the 
application execution, as no data is available regarding the average execution time of 
tasks, tasks are assigned randomly. We call this adaptive strategy Random & Average, 
although the random assignment  is done only once, simply as a way  to obtain 
information about the tasks’ execution time.   

4. Experimental study 

In this section, we evaluate the performance of several scheduling strategies with 



 

respect to the efficiency and the execution time obtained when they are applied to 
schedule master-worker applications on homogeneous systems. As we have stated in 
previous sections, we focus our study on a set of applications that are supposed to 
exhibit a highly regular and predictable behavior. We will test different scheduling 
strategies that include both pure static strategies that do not take into account any 
runtime information and adaptive and dynamical strategies that try to learn from the 
application behavior.  

As a main result from these simulation experiments, we are interested in obtaining 
information about how the proposed adaptive scheduling strategy performs on 
average, and some bounds for the worst case situations. Therefore, in our simulations 
we consider that the number of processors is available through the whole execution of 
the application (i.e. this would be the ideal case in which no suspensions occur).  

4.1 Policies Description 

The set of scheduling strategies used in the comparison were the following: 
• LPTF (Largest Processing Time First): For each iteration this policy first 

assigns the tasks with largest execution time.  Before an iteration begins, tasks 
are sorted decreasingly by execution time.  Then, each time a worker is ready to 
receive work, the master sends the next task of the list, that is, the task with 
largest execution time.  It is well known that LPTF is at least ¾ of the optimum 
[9]. This policy needs to know the exact execution time of the tasks in advance, 
which is not generally possible in a real situation, therefore it is only used as a 
sort of upper bound in the performance achievable by the other strategies. 

• LPTF on Expectation: It works in the same way as LPTF, but tasks are initially 
sorted decreasingly by the expected execution time. In each iteration tasks are 
assigned in that predefined order. If there is no variation of the execution time of 
the tasks, the behavior of this policy is the same as LPTF.  This policy is static 
and non-adaptive, and represents the case in which the user has an approximately 
good knowledge of the behavior of the application and wants to control the 
execution of the tasks in the order that he specifies. Obviously, it is possible for a 
user to have an accurate estimation of the distribution of times between the tasks 
of the application, but in practice, small variations will affect the overall 
efficiency because the order of assignment is fixed by the user at the beginning.  

• Random:  For each iteration, each time a worker is ready to get work, a random 
task is assigned. This strategy represents the case of a pure dynamic method that 
does not know anything about the application. In principle, it would obtain the 
worst performance of all the present ed strategies, therefore it will be used as a 
lower bound in the performance achievable by the other strategies.   

4.2. Simulation Framework  

All described scheduling policies have been simulated systematically, to obtain 
efficiency and execution time, with all the possible number of workers ranging from 1 
to as many workers as numbers of tasks, considering the following factors: 



 

• Workload (W): This represents the work percentage done when executing the 
20% largest tasks.  We have considered 30%, 40%, 50%, 60%, 78% 80% and 
90% workload values.  A 30% workload would correspond to highly balanced 
applications in which near all the tasks exhibit a similar execution time. On the 
contrary, a 90% workload would correspond to applications in which a small 
number of tasks are responsible for the largest amount of work. Moreover, the 
20% largest tasks can have similar or different execution times. They are similar 
if their execution time differences are not greater than 20%. The same happens to 
the other 80% of tasks.  For each workload value we have undertaken simulations 
with the four possibilities (referred as i-i in figures of section 4.3). 

• Iterations (L):  This represents the number of batches of tasks that are going to be 
executed. We have considered the following values: 10, 35, 50 and 100.  

• Variation (D):  From the workload factor, we determine the base execution times 
for the tasks.  Then, for each iteration a variation is applied to the base execution 
times of each task.  Variations of 0%, 10%, 30%, 60% and 100% have been 
considered. When a 0% variation was used, the times of the task were constant 
along the different iterations. This case would correspond to very regular 
applications where the time of tasks is nearly the same in successive iterations. 
When a 100% variation was used, tasks exhibit significant changes in their 
execution time in successive iterations, corresponding to applications with highly 
irregular behavior.   

• Number of Tasks (T): We have considered applications with 30, 100 and 300 
tasks. Thus we examine systems with a small, a medium or a large amount of 
tasks, respectively.  

For each simulation scenario (fixing a certain value for workload, iterations and 
variation) the efficiency and execution time have been obtained using all the workers 
from 1 to Number of Tasks. 

4.3. Simulation Results 

Although we have conducted tests for all the commented values, in this section we 
present only those results that are the most interesting. We will illustrate with figures 
the results for 30 tasks since they prove to be representative enough for the results 
obtained with a larger number of tasks. Moreover, we emphasize those results with 
30% and 100% deviation, representing low and high degrees of regularity.  In real 
applications 100% deviation is not expected, but it allows us to evaluate the strategies 
under the worst case scenario. 

In the rest of the section some relevant result figures for both efficiency and 
execution time are presented.  The X-axis always contain the number of workers. The 
Y-axis contain the efficiency and the execution time values respectively. Five values 
W, i-i, D, T and L appear at the top of each figure. W stands for the workload, i-i 
describes the similarity of tasks, D stands for variation applied to task execution time 
at each iteration, T stands for the number of tasks and L for the number of iterations 
(loop). We now review the most relevant results obtained from our simulations. 
Effect of the number of iterations (L): The number of iterations (L) that tasks are 
executed does not significantly affect efficiency for an adaptive strategy such as 



 

Random & Average. Figure 2 shows the effect of varying the number of iterations, 
considering 30% workload and 100% deviation.  This is the case when the effect of 
the number of iterations is the most significant. As can be seen when the number of 
iterations varies from 10 to 35 the gain in efficiency is less than 5%. When the 
number of iterations was greater than 35, no significant gain in efficiency was 
observed. Therefore, our proposed strategy achieves a good efficiency without 
needing a long number of iterations to acquire a precise knowledge of the application. 
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Figure 2. Effect of varying the number of iterations. (a) L=10 (b)  L=35 

Effect of the workload (W): Figure 3 shows the effect of varying the workload, 
considering 30% and 60% workload, 0% deviation and the same execution time for 
all the largest tasks, and for all the smallest tasks. As expected, for large workloads 
the number of workers that can usefully be busy is smaller than for small workloads. 
Moreover, when the workload is higher, efficiency declines faster. A large workload 
also implies a smoother curve in efficiency. It is important to point out that in all 
cases there is a point from which efficiency continuously declines. Before that point, 
small changes in the number of workers may imply significant and contradictory 
changes in efficiency. 
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Figure 3.  Effect of varying the workload. (a) W=30% (b) W=60% 

Effect of the tasks sizes (i-i): The 20% largest tasks determine when the drop of 
efficiency begins.  If they have the same execution time the decay in efficiency is 
delayed.  The 80% smallest tasks have less influence, they basically determine the 
smoothness of the efficiency curve. If the 80% smallest tasks have the same execution 
times the efficiency curve have more peaks. 



 

Effect of the variation (D): When deviation is higher, efficiency declines more.  
But it is worth noting that it does not decline abruptly even when deviation is 100%. 
For all policies , even for high values of deviation (60% or 100%), efficiency was 
never worsen more than 10% of the efficiency obtained with 0% deviation. 

Finally, Figure 4 illustrates the overall behavior that we have obtained for the 
execution time when using the different scheduling policies. The execution time is 
measured in terms of the relative differences with the execution time of LPTF policy. 
As can be see, the Random policy always exhibits the worst execution time, especially 
when an intermediate number of processors are used. Random & Average and LPTF 
on Expectation achieve an execution time comparable to the execution time of LPTF 
even in the presence of a high variation in the execution time of the tasks. 
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Figure  4. Execution time. (a) D=0% (b) D=100% 

4.4. Discussion 

We now summarize the main results that have been derived from all the 
simulations. 

The number of iterations does not significantly affect either efficiency or execution 
time. The behavior of the policies was very similar for all the number of workers, but 
it was  strongly affected by the variation of the execution times of the tasks in different 
iterations, by the workload and by having significant differences among the execution 
times of the 20% largest tasks. 

Table 1 shows the efficiency bounds obtained for the previously described 
scheduling policies, always relative to LPTF policy. The first column contains the 
upper bound that is never surpassed in 95% of cases. The second column shows the 
upper bound for all the cases, which always corresponded to 30% 0-0 workload with 
D=100%, that is, tasks without significant execution time differences and with high 
variance. As can be seen, both LPTF on Expectation and Random & Average in most 
cases obtained an efficiency similar to the efficiency obtained by a policy such as 
LPTF that uses perfect information about the application. Even in the worst case 
(scenarios in which all tasks have a similar execution time but a high deviation 
(100%)) the loss of efficiency for both strategies was 17% approximately. 



 

Table 1.  Worst efficiency bounds for scheduling policies. 

 Eff. Bound in 95% of cases Worst Efficiency Bound 
Random 25,4 % 26,96 % 

Random & Average 8,65 % 16,86 % 
LPTF on Expectation 8,91 % 17,29 % 

Slightly better results were obtained for execution time. Random & Average and 
LPTF on Expectation never performed worse than 4% in more than 95% of the cases. 
Only in the presence of high variations were the differences increased to 8%. In all 
cases, the execution time of the Random policy was always between 25% and 30% 
worse than LPTF. 

As a consequence of the simulations carried out, we can conclude that a simple 
adaptive strategy such as Random & Average will perform very well in terms of 
efficiency and execution time in most cases. Even in the presence of highly irregular 
applications the overall performance will not significantly worsen. Similar results 
have been obtained for the LPTF on Expectation policy, but the use of this policy 
implies that the user needs a good knowledge of the application. Therefore, Random 
& Average appears to be a promising strategy for solving the master-worker 
scheduling problem. 

From our simulation we have also derived an empirical rule to determine the 
number of workers that must be allocated in order to get a good efficiency and a good 
execution time. The number of workers depends on the workload factor, on the 
differences among the execution times of the 20% largest tasks and on the variation of 
the execution times for different iterations. From our simulation results we have 
derived empirical table 2 which shows the number of processors that should be 
allocated, according to our simulations, for obtaining efficiency higher than 80% and 
execution time lower than 1.1 the time of executing the tasks with as many workers as 
tasks. This table gives an empirical value for the number of workers that ensures a 
smooth decrease in efficiency if more workers are added. 

Table 2.  Percentage of workers with respect to the number of tasks. 
Workload <30%  30% 40% 50% 60% 70% 80% 90% 
%workers (largest tasks similar size) Ntask 70% 55% 45% 40% 35% 30% 25% 
%workers (largest tasks diff.  size) 60% 45% 35% 30% 25% 20% 20% 20% 

4.5. Implementation on a Condor pool 

T he effectiveness of the Random & Average strategy has been tested in a real test 
bed, using a Condor [10] pool at the University of Wisconsin. Our applications 
consisted on a set of synthetic tasks that performed the computation of Fibonacci 
series.  The execution of the application was carried out by using the services 
provided by MW [11]. In general, we have obtained efficiency values close to 0.8 and 
speedup values close to the maximum possible for the application [12]. 



 

5. Conclusions  

In this paper we have discussed the problem of scheduling master-worker 
applications on clusters of homogeneous machines. We have proposed a scheduling 
policy that is both simple and adaptive, and takes into account the measurements 
taken during the execution of the tasks of the master-worker application. Our strategy 
tries to allocate and schedule the minimum number of processors that guarantee a 
good speedup by keeping the processors as busy as possible.  

We have compared our strategy by simulation with several scheduling strategies 
using a large set of parameters to model different types of master-worker applications. 
And we also tested a preliminary version of the scheduling strategy on a cluster of 
machines, the resources of which were provided by Condor. The preliminary set of 
tests with synthetic applications allowed us to validate the results obtained in our 
simulations and the effectiveness of our scheduling strategy. In general, our adaptive 
scheduling strategy achieved an efficiency in the use of processors close to 80%, 
while the speedup of the applications was similar to the speedup achieved with a 
higher number of processors.  

We will continue this work by first adapting the proposed scheduling strategy to 
handle an heterogeneous set of resources. Another extension will focus on the 
inclusion of additional mechanisms that can be used when the distance between 
resources is significant. 
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