MATCHMAKING FRAMEWORKS FOR
DISTRIBUTED RESOURCE
MANAGEMENT

By

Rajesh Raman

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocTOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN — MADISON

2001

Abstract

Federated distributed systems present new challenges to resource management.
Conventional resource managers are based on a relatively static resource model
and a centralized allocator that assigns resources to customers. Distributed envi-
ronments, particularly those built to support high-throughput computing (HTC),
are often characterized by distributed management and distributed ownership.
Distributed management introduces resource heterogeneity: Not only the set of
available resources, but even the set of resource types is constantly changing.
Distributed ownership introduces policy heterogeneity: Each resource may have
its own idiosyncratic allocation policy.

We propose a resource management framework based on a matchmaking
paradigm to address these shortcomings. Matchmaking services enable discov-
ery and exchange of goods and services in marketplaces. Agents that provide
or require services advertise their presence by publishing constraints and pref-
erences on the entities they would like to be matched with, as well as their own
characteristics. A matchmaker uses a matching operation to discover pairings
between compatible agents. Since the notion of “compatible” is completely de-
termined by the content of agent classified advertisements (classads), a match-
maker can match classads from different kinds of entities in a general manner.

Matched agents activate a separate claiming protocol to confirm the match

il

and establish an allocation. The resulting framework is robust, scalable, flexi-
ble and evolvable, and has been demonstrated in Condor, a production-quality
distributed high throughput computing system developed at the University of
Wisconsin-Madison.

The goal of this dissertation is to show the power, flexibility, desirability and
feasibility of resource management through matchmaking. We detail the archi-
tecture and operation of matchmaking frameworks, and describe mechanisms
to implement the components and interactions in such systems.

We describe the architecture of a matchmaking framework that distinguishes
itself by providing both bilateral and multilateral matchmaking (i.e., gang-
matching) services. The classad language, a semi-structured agent specification
language, is presented, and an indexing model for the classad data model is
defined. The indexing solution tolerates the lax semantics of semi-structured
data models, and indexes both classad attributes and constraints to efficiently
identify compatible advertisements. Finally, algorithms that implement the pro-
posed gangmatching model are described, and their performance characteristics

analyzed.

il

Acknowledgements

No sufficiently complex enterprise can be accomplished alone, and graduate
research is no exception. Miron Livny provided me with the opportunity of
working with a top-class research group and helped me through my graduate
years. This research could not have been accomplished if it were not for his
insightful guidance as my advisor, and intrepid leadership of the Condor project.
Marvin Solomon has been an invaluable source of ideas and technical wisdom,
ranging from ASN.1 and “bottom-up semi-naive techniques” to the semantics
of comments in Perl and make. Marv also greatly improved the quality of this
manuscript by pointing out errors, inconsistencies and typos.

There are many people who have influenced the course of my life. My
interest in computer science is almost entirely due to Akshay Kadam and Kiran
Pamnany, who have been life-long cohorts and the best of friends. (We’ll get
down to writing that operating system some day.) Alan Zaring, Kathy Radloff
and Jeff Nunemacher at Ohio Wesleyan motivated me to obtain a graduate
degree and provided me with an absolutely fantastic undergraduate education.
Dad and Mom have been a constant source of support and encouragement. If it
were not for the sacrifices they made in getting me through college, none of this
would have been possible. Amma and Appa (my other parents) provided an

immense amount of support and enabled me to finish my graduate education.

v

I owe the greatest thanks to the many people who have developed for and
been part of Condor Team. Mike Litzkow and Jim Pruyne patiently explained
the intricacies of the system when I was still a newbie. Todd Tannenbaum,
Derek Wright and Jim Basney are part of the core Condor Team and are largely
responsible for Condor’s success. I will never forget the heady days of hacking
Version 6 with these extremely talented individuals. I also owe a note of sincere
thanks to all my colleagues at Condor who have made the project what it is —
there are too many of you to list by name, but you know who you are.

Finally, and most specially, I must thank my wife Vidya. Vidya’s compan-
ionship and love has been instrumental in leading me out of some pretty rough
times and bringing me to where I am. My graduate career would not have

been possible if were not for Vidya’s unconditional TLC, and most excellent

back-rubs.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Matchmaking
1.1.1 Philosophy and Architecture
1.1.2 Components
1.1.3 Advantages
1.2 Overview of the Dissertation

2 The Classified Advertisements Language

2.1 Design Goals
2.2 Overview
2.3 Typesand Values
2.4 Expressions and Evaluation Semantics
2.4.1 ClassAd Expressions
2.4.2 List Expressions oL
2.4.3 Literals
244 Operations.

2.4.5 Attribute References

2.5

2.6

2.7

The

3.1

3.2

vi

24.6 FunctionCalls. 32
2.4.7 Circular Expression Evaluation 33
Example ClassAd Policies 33
2.5.1 Workstation Access Control 33
2.5.2 Time-Dependent Resource Preference 34
2.5.3 Time-Dependent Resource Constraints 35
Useful ClassAd Processing Algorithms 36
2.6.1 Specializationo 37
2.6.2 External Reference Determination 40
Related Work oo 42
Gangmatching Model 45
Goals 45
3.1.1 The Benchmark Problem: License Management 45
3.1.2 Decentralized Management 46
3.1.3 Provider/Requester Symmetry 48
3.1.4 Single Clearing-House Abstraction. 49
3.1.5 Support for User and Administrative Policy 50
Language Representations 51
3.2.1 Attribute Interpretation and Meaning 51
3.2.2 Ports and Docking 0oL 54
3.2.3 User Policy Specification 56

3.2.4 Administrative Policy Specification 58

vil

3.2.5 Summary of Representation and Discussion 63
3.3 The Matchmaking Framework Architecture 67
3.3.1 Provider and Requester Architecture 67
3.3.2 Matchmaker Architecture 69
3.4 Advertising 71
3.4.1 Advertisement Creation Mechanism 71
3.4.2 Advertisement Identity and Lifetime 74
3.5 Match Creation 75
3.6 Notification 76
3.7 Claiming 7
3.8 The Condor Matchmaking Scheme 80
3.9 Related Work oo 83
ClassAd Indexing 86
4.1 Intuition 86
4.2 The Indexing Data Model 88
4.2.1 1IDM Structure 89
4.2.2 Rectangle Equivalence 90
4.2.3 Deviation from the IIDM 92
4.3 Indexed Matchmaking with Rectangles 92
4.4 Indexing Semi-Structured Data 94
4.4.1 High and Variable Dimensionality 94

4.4.2 Similarly Named Attributes 96

4.5

4.6

4.4.3 Identifying Attributes to Index
4.4.4 Type Heterogeneity
4.4.5 Absent Attributes and Constraints
The Complete Indexing Solution
4.5.1 Overview
4.5.2 Rectangle Conversion
4.5.3 Index Structures L
4.5.4 Querying and Match Identification
Performance Study L.
4.6.1 Workload

4.6.2 Results.,

4.7 Related Work

Gangmatching Algorithms

5.1

5.2

5.3

Gangmatching Algorithm Issues
5.1.1 Alternative Algorithms, Combinatorics and Efficiency . .
5.1.2 Preferences L.
5.1.3 Absence of Deadlock
Performance Evaluation Methods
5.2.1 The Base Workload
5.2.2 Performance Evaluation Method
Naive Gangmatching

5.3.1 Algorithm Description

viil

97

98

99
100
100
101
103
105
109
111
112

116

119

120

120

X

5.3.2 Performance and Observations 134
5.4 LR: Indexed In-Order Gangmatching 139
5.4.1 Motivation oL 139
5.4.2 Algorithm Description 139
5.4.3 Performance and Observations 141
5.5 DYN: Dynamic-Order Gangmatching 145
5.5.1 Motivationo 145
5.5.2 Algorithm Description 152
5.5.3 Performance and Observations 154
5.6 The Dynamic Algorithm’s Advantage 156
5.6.1 The RL Algorithm 159
5.6.2 The LRC and RLC Algorithms 160
5.7 Heuristic Failure 0oL 163
5.8 DYNS: DYN with Summarization 166
5.8.1 Algorithm Description 166
5.8.2 Performance and Observations 167
5.8.3 DYNSR: DYNS with Random Start 169
5.9 Summary of Gangmatching Algorithms 173
Conclusions and Future Directions 176
6.1 Conclusions and Contributions 176
6.2 Future Directions L 178

6.2.1 General Matchmaking, 179

6.2.2 Gangmatchingo 181
Bibliography 186
A ClassAd Language: Built-in Functions 193

A.1 Type predicates (Non-Strict) 193
A.2 List Membership 194
A3 Time Queries 194
A4 Time Construction 195
A.5 Absolute Time Component Extraction 195
A.6 Relative Time Component Extraction 196
A.7 Time Conversion 196
A.8 String Functions 196
A.9 Type Conversion Functions 197

A.10 Mathematical Functions 198

Chapter 1

Introduction

Conventional resource management systems assume a system model, which is
an abstraction of the underlying resources, to describe the availability, perfor-
mance characteristics and allocation policies of the resources being managed. A
centralized allocator consults the system model to establish and maintain cur-
rent and future allocation information in schedules. Indeed, one of the primary
activities of conventional resource managers is the creation of efficient alloca-
tion schedules, which are usually constructed to optimize a given performance
metric, such as response time, utilization, or system throughput. Such resource
management strategies work well in high performance scheduling regimes, where
resources are relatively static and dedicated, time constraints on schedules are
tight, and resource usage patterns are firmly legislated and policed.

However, resources in many distributed environments cannot be described
by system models, and therefore cannot be managed by conventional resource
management systems. Issues that obstruct formulation of monolithic system

models include:

1. Distributed Ownership. In many environments, resources such as power-
ful commodity workstations are assigned to (and therefore “owned” by)
single users and small groups. Each resource in such distributively owned
environments can exhibit a unique usage pattern and allocation policy,
which can vary from indifferent to idiosyncratic. For example, an owner
may institute a policy on a workstation that states that a foreign job can
be run on the machine only if it was submitted by a member of a par-
ticular group, or if the job is run between 6 p.m. and 6 a.m., or if the
keyboard has been idle for more than fifteen minutes and the load average
is less than 0.3. The behavior of such resources, which transit between
available and unavailable states nondeterministically, cannot be captured

in predictive system models.

2. Resource Failure. Even the most carefully constructed allocation schedules
can be frustrated by resource failure. System crashes due to hardware
faults, software bugs or power outages are inherently unpredictable, and
not uncommon. Furthermore, the probability of system failure rises as
the number of resources in the environment increases. When resources
that are relied on fail, guarantees made by the allocator to customers in
terms of response time or reserved time slots must be retracted, greatly

diminishing the benefits of creating allocation schedules.

3. Heterogeneity. The semantics of “allocating” a resource to a customer

depends significantly on the type of resource being allocated. For exam-
ple, the specific semantics of allocating a compute node to a customer
is very different from allocating network bandwidth or storage space. It
is extremely difficult to capture the varied allocation semantics of both
single resources and groups of resources (as might be required when co-
scheduling) in a unified system model. The problem of heterogeneity is
exacerbated by pool evolution (discussed shortly): even if a unified sys-
tem model could be constructed, the model would have to be modified

frequently.

4. Fwvolution. Most resource pools exhibit almost continuous evolution. Given
the rapid development pace and cost depreciation of technology, it is com-
mon for resources to be modified, upgraded or even completely replaced
relatively often. Pool evolution affects the construction of system mod-
els in two ways. First, the resource must be temporarily or permanently
retracted from the pool, affecting allocation schedules. Second, the re-
placed or upgraded resource must be re-introduced into the environment,

requiring a change to the system model.

In light of these difficulties, the need for a resource management paradigm that
does not require a monolithic system model is clear. We propose a matchmaking

resource management solution to address the above problems.

1.1 Matchmaking

The underlying ideas of matchmaking are simple. Servers and customers adver-
tise their presence to a common advertising service by describing their character-
istics in advertisements. These advertisements also contain qualitative descrip-
tions of the entities the agents would like to be matched with. A matchmaker
discovers compatible providers and customers with a generic matching opera-
tion and notifies the matched agents, which then employ a protocol to connect
to each other and enable exchange of service.

The matchmaking-based resource management paradigm avoids the prob-
lems associated with defining system models and allocation schedules by using
an opportunistic scheduling paradigm: Resources are used as soon as they be-
come available, and applications are migrated from resources that become un-
available. While this paradigm is not optimal for high-performance computing,
the paradigm works well for high-throughput computing, where robustness and
availability of the environment are very significant factors [37]. The matchmak-
ing scheme has been validated in the Condor [35, 36] high throughput comput-
ing system developed at University of Wisconsin-Madison. Condor is heavily
used by scientists at numerous sites around the world, and derives much of its

robustness and efficiency from the matchmaking architecture.

1.1.1 Philosophy and Architecture

A fundamental observation that drives most of our work is that the dynamics of
large heterogeneous and distributed environments require resource management
paradigms that approximate the discovery and exchange of goods and services
in marketplaces. With this observation in mind, we identify three essential

features that guide the design of our framework.

1. We require that the framework be decentralized not only at a physical
level, but at a policy level as well. Thus, we require that there be no
central authority that dictates how resources or customers may represent
themselves, what their local policies may be, or how they may claim each

other when matched.

2. Mechanisms and facilities provided to customers should also be made avail-
able to servers. Mechanisms available to one set of parties but not another
reflect (usually undesirable) assumptions about the behavior of participat-

ing principals.

3. The environment must present the image of a single “clearing house” of
providers and requesters. This requirement greatly simplifies the specifi-
cation of policies for both servers and customers, since there is an easily

definable global notion of the “best match candidate.”

A detailed discussion of these requirements is presented in Chapter 3.

1.1.2 Components

The main actions involved in the matchmaking process are advertising, match-
ing, notification and claiming. The above interactions between the matchmaker
and other principals participating in the matchmaking environment motivate

the definition of the following components of a matchmaking service.

1. A language for specifying the characteristics, constraints and preferences
of principals. Our framework uses the classified advertisement (classad)
language for this purpose. Figure 1 shows a classad representing a work-
station. The Constraint attribute indicates that the workstation only
runs jobs when it is idle (as determined by load average and keyboard
idle time) and if the job’s image size is 15 megabytes less than the phys-
ical memory size of the machine, with a preference for jobs submitted

" The classad language is a symmetric description lan-

by user “raman.’
guage; both servers and customers use the same language to describe their
respective characteristics, constraints and preferences. Among other con-
structs that allow entities to be easily represented, the language supports
semi-structured “records” that are used as the descriptions themselves,

and dynamic typing with special undefined and error values that en-

able robust evaluation semantics in heterogeneous environments.

2. The Matchmaker Protocol is composed of the publishing protocol and noti-

fication protocol that respectively describe how agents communicate with

Type
Activity
KeybrdIdle
Disk
Memory
State
LoadAvg
Mips

Arch

OpSys
KFlops
Name

Rank
Constraint

= "Machine";
= "Idle";

’00:23:12°; // h:m:s
323.4M; // mbytes

= 64M; // mbytes
= "Unclaimed";

= 0.042969;

= 104;

"INTEL";
"SOLARIS251";

= 21893;

= "foo.cs.wisc.edu";

= other.Owner=="raman" ? 1 : 0;
= other.Type == "Job"

&& LoadAvg < 0.3 && KeybrdIdle>’00:15’
&&% Memory - other.ImageSize>=15M

Figure 1: A classad describing a workstation

the matchmaker to post advertisements and receive notifications.

. The Matchmaking Algorithm is used by the matchmaker to create matches.

In the abstract, the matchmaking algorithm relates the contents of sub-

mitted classads and the state of the system to the matches that will be

created. As part of this process, the algorithm defines a set of conven-

tions (an advertising protocol) which binds meanings to certain classad

attributes that will be used for special purposes. For example, a match-

maker may define that in any classad, the attributes named Constraint

and Rank will be respectively treated as the constraints and preferences

defined by the advertising entity.

4. The Claiming Protocol is activated between the matched parties to con-
firm the match and establish a working relationship. In our resource
management framework, we require that the locus of control for claiming
reside in the matched agents themselves. An important motivation for
this requirement is that, in our framework, a match between A and B is
not the same as allocating A to B. Instead, the match is permission for A
and B to cooperate — it is the agents’ responsibility to verify the match
and decide if cooperation is still desirable. Either entity may choose to

not go further and reject the match altogether.

1.1.3 Advantages

Realizing opportunistic scheduling through matchmaking addresses several of

the problems associated with creating system models and allocation schedules.

1. The expressive nature of the classad language addresses the problems of
heterogeneity and distributed ownership associated with conventional re-
source management systems. Sophisticated policies placed on resources
by resource owners can be expressed and enforced. The language allows
various kinds of entities to enter the environment and represent themselves
effectively without requiring any change to the matchmaker in terms of
schema evolution or resource-specific modifications. Thus a classad-based
matchmaking framework facilitates management of distributively owned,

heterogeneous resource environments.

2. By placing time-outs on advertisements, common problems associated
with resource failure and evolution can be avoided: when a resource fails
or is temporarily removed from the environment for upgrade, it “ceases
to exist” after its advertisement expires. (A modified resource re-enters
the pool in the same manner as a completely new resource.) Heart-beat
protocols can be piggy-backed on advertisement updates for dynamic in-
formation (such as load average), with which the state of the environment
can be deduced fairly accurately. Matches made with stale advertisements
can be efficiently detected and handled by the claiming protocol, as will

be discussed shortly.

A key idea of matchmaking is that “resource allocation” is a two step pro-
cess: matching and claiming. Matching is performed in a centralized manner
to enforce fairness with pool-wide priority mechanisms. Centralized matchmak-
ing also provides all servers and customers with wide access to the classads of
all potential agents they would like to be matched with and facilitates easier
administration and control. In contrast, the claiming phase of the operation is
performed in a distributed manner.

The separation of allocation into matching and claiming has several benefits.

Weak consistency requirements. Since the state of service providers and
requesters may be continuously changing, there is a possibility that the
matchmaker made a match with a stale advertisement. Claiming allows

the provider and customer to verify their constraints with respect to their

10

current state. This toleration of weak consistency makes the remainder of

the system significantly simpler, more robust, and more efficient.

Authentication. The claiming protocol may use cryptographic techniques for
the provider and customer to convince each other of their identities. A
challenge-response handshake can be added to the claiming protocol at

very little cost.

Bilateral specialization. In dynamic heterogeneous environments, it is very
difficult to write a matchmaker that is aware of the specifics of allocating
all the different kinds of resources that may be added to the environment.
Indeed, the myriad kinds of resources already present in the environment
may itself present the problem of packing all the resource specific alloca-

tion code in the matchmaker.

By pushing the establishment of allocation to the claiming stage, the de-
tails of allocation are contained in the entities that really need to interact
with specific kinds of providers and customers. The matchmaker may be
written as a general service that does not depend on the kinds of services

and resources that are being matched.

Bilateral specification implies that since the system does not assume a
single monolithic or static allocation model, the allocation models are

supplied by the entities involved in providing and using services. The

11

matchmaking framework thus allows several dissimilar “allocation mod-

els” to coexist in the same resource management environment.

End-to-end verification [45]. The principals involved in a match are them-
selves responsible for establishing, maintaining and servicing a match. The
matchmaker only holds a “soft state” representation of active claims for
accounting purposes, a fact that simplifies recovery in case of failure and

makes the system more scalable.

1.2 Overview of the Dissertation

The goal of this body of work is to demonstrate the power, flexibility, feasibility
and desirability of matchmaking as a resource management paradigm. As such,
we identify all the primary components and interactions that must exist in a
matchmaking environment, and describe mechanisms to address the difficulties
that arise when deploying such a framework in a resource management context.

A fundamental notion in any matchmaking environment is entity description,
which is accomplished with the use of a description language. In Chapter 2, we
describe in detail the design goals, structure and semantics of the description
language used in our matchmaking framework, the classified advertisement (or
classad) language.

The architecture of our matchmaking model is detailed in Chapter 3. While

utilization of the matchmaking paradigm in resource management is in itself

12

a unique proposition, the proposed model also distinguishes itself in providing
both bilateral and multilateral matchmaking services. The issues of advertise-
ment and advertisement mechanisms are addressed, the semantics of matches
are described, and the functionality implications of notification and claiming
protocols are discussed.

Although the classad language affords a relatively light-weight mechanism
to test for advertisement compatibility, the presence of a large number of servers
and customers in a resource management environment can still place a signif-
icant load on the matchmaking process. However, due to the database rep-
resentation of classads, indexing technologies may be utilized to significantly
decrease the cost of identifying compatible classads. In Chapter 4, we present
a complete indexing solution developed for the semi-structured classad data
model which, when presented with a classad, efficiently identifies all possible
candidate matches by indexing both attributes and constraints. The indexing
scheme has been designed to work as a component of both bilateral and mul-
tilateral matchmaking algorithms, and makes very significant improvements to
overall matchmaking performance.

Algorithms for multilateral matchmaking are significantly more complex
than their bilateral counterparts. Multilateral matchmaking is fundamentally a
combinatorial algorithm, which results in extremely large execution times even

for problems of moderate size if solved with naive algorithms. In Chapter 5, we

13

describe several gangmatching algorithms and present the results of a perfor-
mance study.

Matchmaking for resource management is a new area, and although this
body of work identifies and addresses many fundamental issues, the problem has
many aspects that are worth further investigation. In Chapter 6, we summarize
our work, present our contributions and identify directions for future research

and study.

14

Chapter 2

The Classified Advertisements

Language

A fundamental component of any matchmaking environment is the language
used to describe entities in advertisements. The advertisement language serves
as a common communication substrate to enable the various principals to inter-
act with each other and communicate their notions of “compatibility” concisely
and unambiguously. As such, the flexibility, robustness and inherent complex-
ity of an advertisement language has profound implications on the functionality
and efficiency of a matchmaking environment.

In this chapter, we describe the classified advertisement (classad) language,
which is a simple, expressive and flexible language employed by our framework.
We begin with a discussion of the desired properties of an advertisement lan-
guage to motivate and justify our design. We then present a brief overview of
the main characteristics of the language in the context of matchmaking, fol-
lowed by a more detailed description of the language’s structure and semantics.
Concrete examples of non-trivial and practical policies are then encapsulated in

classads and presented to exemplify the salient features of the language. Certain

15

classad processing algorithms are extremely useful as fundamental operations
in defining more complex algorithms that streamline the matchmaking process.
We describe these algorithms and their usefulness in the context of the match-

making scheme, and conclude with a brief survey of related work.

2.1 Design Goals

The matchmaking framework design principles of symmetry and decentraliza-
tion provide very specific language design directions: clearly, both requests and
offers must be similar in structure, and no centralized schema may be used.

These points and other key design issues are enumerated below.

1. Symmetric. As discussed earlier, a key requirement of our matchmaking
framework is that the matchmaking model and mechanisms be symmetric
to both providers and requesters. This requirement includes the adver-
tisement language too. The implication of this requirement is that the
advertisement language must be powerful and flexible enough to subsume
the functionality of traditional resource description and resource selection
languages commonly found in conventional resource management systems.
We also require the language to provide the dual properties of customer

description and customer selection.

2. Semi-structured. The proscription of centralized control (and hence

16

centralized schema management) naturally suggests the use of a semi-
structured model as the basis of the description language. Semi-structured
data models (such as XML [9]) are finding widespread acceptance due to
their flexibility in managing heterogeneous and distributed information.
In the context of matchmaking, the use of a semi-structured data model
would facilitate the representation of heterogeneous entities, but also in-
troduce the problem of determining compatibility with partial or missing
information. Our solutions to these (and other) problems associated with

the adoption of a semi-structured model are discussed shortly.

. Declarative. We require that the advertisement language be declara-
tive rather than procedural. By this we mean that advertisements should
describe notions of compatibility “qualitatively,” rather than specifying
a procedure for determining compatibility. The significant advantages
that declarative specifications provide over their procedural counterparts,
especially with regard to alternative implementation strategies and opti-
mization, are well known. In addition, declarative specifications simplify
the process of specifying, understanding and maintaining policy specifica-

tions.

. Simple. It is extremely important for an advertising language to be sim-

ple both syntactically and semantically. A complex specification language

17

is less amenable to efficient and correct implementation. Complex lan-
guages also compound the process of specifying and understanding poli-
cies, making both manual and automatic policy management difficult.
Experience with resource owners in practice have shown that although
policies may be complex with respect to the number of variables involved,
policies are fundamentally simple predicates which do not require a pow-
erful Turing-complete language to be specified. The use of a non-Turing-
complete advertisement language also avoids “Halting Problem” issues, so

compatibility between classads may be tested at low, known costs.

5. Portable. A key advantage of matchmaking systems is their ability
to manage heterogeneity naturally and efficiently. However, this prop-
erty is predicated on the portability of the advertisement language itself.
Specifically, the language must be amenable to efficient implementation
on various hardware and software platforms. Thus, it is not reasonable
to introduce language features that require specific features of the host

architecture that may not be widespread.

2.2 Overview

The classad language is a simple expression-based language that has been de-
signed to meet the above design goals. The central construct of the language

is the classad, which is a record-like structure composed of a finite number

18

of distinctly named expressions, as illustrated in Figure 2. Classads are used
as attribute lists by entities to describe their characteristics, constraints and
preferences. Since whole expressions (and not just scalar values) are bound to
attribute names, classads can naturally accommodate the predicate-like con-
straints used by principals to define their policy requirements. Similarly, prefer-
ences are specified as expressions that are evaluated to numeric values denoting

the “goodness” of candidate matches.

[
Type = "Job";
QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00;
CompletionDate = undefined;
Owner = "raman";
Cmd = "run_sim";

WantRemoteSyscalls = true;
WantCheckpoint = true;

Iwd = "/usr/raman/sim2";

Args = "-Q 17 3200 10";

ImageSize = 31M;

Rank = other.KFlops/1E3 + other.Memory/32;
Constraint = other.Type == "Machine" &&

other.Arch=="INTEL" && other.0OpSys=="SOLARIS251" &&
other.VirtualMemory > self.ImageSize

Figure 2: A classad describing a submitted job

The classad language differentiates between expressions and values: Expres-
sions are evaluable language constructs obtained by parsing valid expression
syntax, whereas values are the results of evaluating expressions. The classad
language employs dynamic typing (or latent typing), so only values (and not

expressions) have types. The language has a rich set of types and values which

19

includes many traditional values (numeric, string, boolean), non-traditional val-
ues (timestamps, time intervals) and some esoteric values, such as undefined
and error. Undefined is generated when an attribute reference cannot be
resolved, and error is generated when there are type errors. In a sense, all clas-
sad operators are total functions, since they have a defined semantics for every
possible operand value, facilitating robust evaluation semantics in the uncertain
semi-structured environment.

Classads may be nested to yield a hierarchical name-space, in which case lex-
ical scoping is used to resolve attribute references. The scoping features of the
language in context of the “match evaluation environment” established by the
matchmaker to test matches result in the semantics that an attribute reference
made from either customer or resource classad of the form “other.attribute-
name” refers to an attribute named attribute-name of the other ad. In addi-
tion, every classad has a builtin attribute self which evaluates to the inner-
most classad containing the reference, so the reference “self.attribute-name”
refers to an attribute of the ad containing the reference. If neither self nor
other is mentioned explicitly, the evaluation mechanism assumes the self pre-
fix. For example, in the Constraint of the job ad in Figure 2, the sub-expression
other.VirtualMemory > self.ImageSize expresses the requirement that the
target machine have sufficient virtual memory to accommodate the requirements
of the job. The expression could also have been written other.VirtualMemory

> ImageSize.

20

A reference to a non-existent attribute evaluates to the constant undefined.
Most operators are “strict” with respect to this value—if either operand is
undefined, the result is undefined. In particular, comparison operators are

strict, so that

other.Memory > 32,
other.Memory == 32,

other.Memory != 32,
and
! (other .Memory == 32)

all evaluate to undefined if the target classad has no Memory attribute. The

Boolean operators || and && are non-strict on both arguments, so that
other.Mips >= 10 || other.Kflops >= 1000

evaluates to true whenever either of the attributes Mips or Kflops exists and
satisfies the indicated bound. There are also non-strict operators is and isnt,
which always return Boolean results (not undefined), allowing explicit com-

parisons to the constant undefined as in

other.Memory is undefined || other.Memory < 32.

21

2.3 Types and Values

We view types as a partitioning of the universe of values in the language, where
every partition is non-empty. To aid in the unambiguous definition of language
semantics, we define fixed internal implementation representations for certain
values (such as numbers), while leaving representations of other values unspec-
ified.

Values in the classad language may be one of the following types.

Undefined. The undefined type has exactly one value: the undefined value.
As its name suggests, the undefined value represents incomplete or un-
known evaluation results due to absent information. The adoption of a
semi-structured data model requires the inclusion of an undefined (or

similar) value for robust evaluation semantics.

Error. The error type has exactly one value: the error value. Similar to the
undefined value, the error value plays an important part in securing
robust evaluation semantics in semi-structured environments. While the
undefined value represents missing information, the error value repre-
sents incorrect or incompatible information, and is usually generated when
operators are supplied with values that are outside the domains of their

operands. For example, the quotient of a number and a string is error.

Boolean. There are exactly two distinct boolean values: false and true. Un-

like their C and C++4 counterparts, boolean values are not considered

22

numeric values, and therefore cannot be directly used in numeric expres-

sions.

String. String values are finite sequences of non-zero 8-bit ASCII characters.

There is no a priori limit of the length of string values.
Integer. Integer values are signed 32-bit two’s complement numbers.
Real. Real values are IEEE-754 double precision numbers.

Absolute Time. Absolute time values are non-negative discrete integral val-
ues recording the number of seconds elapsed between the UNIX epoch
(i.e., 1 January 1970) and the timestamp represented by the value. Ab-
solute time values must be able to represent the largest integer value as a

valid timestamp.

Relative Time. Relative time values are discrete integral values that represent
time intervals in seconds. Relative time values may be negative or zero.
The cardinality of the relative time value set must be at least as large as

the set of integer values.

Classad. Classad values are finite sets of (identifier, expression) pairs, where
each identifier is distinct (ignoring case). Identifiers are strings of al-
phanumeric characters and underscores, which begin with non-numeric
characters. Classad values additionally indicate (directly or indirectly)

the presence of a parent classad (or parent scope), which is the closest

23

enclosing classad. If a classad is not lexically nested, it is called a toplevel
(or root) classad, and its corresponding value does not have a parent scope

component.
List. List values are finite sequences of expressions.

Pedantically, classad and list values do not have external representations — only
classad and list expressions do.! This situation is similar to lambda expressions

and closures in LISP/Scheme.

2.4 Expressions and Evaluation Semantics

The majority of the classad language is straightforward and familiar, with some
modest extensions. Most of the subtlety of the classad language lies in the
treatment of attribute references, which operate in a lexical scoping formalism,
but may also explicitly traverse the hierarchical classad namespace during an
evaluation to access an attribute.

All expression evaluations occur in the context of a given classad, which
may be nested arbitrarily deep inside other classads. However, for any given
expression evaluation, there is a single unique outermost classad that is not

nested. We designate this classad the root (or toplevel) classad.

IPragmatically, however, the scope information associated with these values may be ig-
nored to provide a usable external representation if interpreted in context.

24

2.4.1 ClassAd Expressions

A classad is constructed with the mixfix classad construction operator, as shown

in the syntax schema below.
[namegy = expry ; namey = expry ; ... ; name, = expr,]

Each name; is a unique identifier, and each expr; is an expression. A classad
expression evaluates to a classad value. Every classad value has three implicit
attributes: self, parent and root. These attributes are reserved in the con-

crete syntax and therefore may not be used as any of the name;.

2.4.2 List Expressions
A list is constructed with the list construction operator as illustrated below.
{expry , expr, , ..., expr, }

A list expression evaluates to a list value, which can later be used as an array

in subscript expressions.

2.4.3 Literals

Literals are atomic expressions that directly evaluate to scalar values (i.e., non-
classad and non-list values). In this sense, literals directly represent the values
that they evaluate to. Examples of literal expressions for values of the various
types are provided below. (With the exception of string literals, all literals are

case-insensitive.)

25

e Undefined: undefined

e Error: error

e Boolean: false, true

e String: "foo", "bar\n\t" (C-style escapes are supported.)
e Integer: 10, 0xff (Hex), 0600 (Octal)

e Real: 3.141, 6.023e23, 2K (i.e., 2048.0) The suffixes B, M, G and T repre-

senting scale factors of 20, 210, 220 and 230 are also supported.
e Absolute Time: ’Thu Aug 17 18:21:07 2000 (CDT) -06:00’

e Relative Time: *18:21:32’, ’3d19:49:15’

2.4.4 Operations

Operations are expressions that combine other expressions by means of unary,
binary and ternary operators. The operators are essentially those of the C lan-
guage, with certain operators excluded (e.g., pointer and dereference operators)
and others added (e.g., non-strict comparison). Thus, a rich set of arithmetic,
logic, bitwise and comparison operators are defined. The set of supported op-
erators and their relative precedences are summarized in Figure 3.

In the following specification of operator semantics, it is to be assumed that
unless otherwise specified, operators are strict with respect to the undefined

and error values in all places, with error taking precedence over undefined.

26

Operator class | Operators Associativity
Primary] Left to right
Unary -+ - Right to left
Multiplicative | * / % Left to right
Additive + - Left to right
Shift << >> >>> Left to right
Relational < <= > >= Left to right
Equality == I= isg isnt | Left to right
Bitwise AND | & Left to right
Bitwise XOR | © Left to right
Bitwise OR | Left to right
Logical AND | && Left to right
Logical OR |l Left to right
Conditional 7: Right to left

Figure 3: Classad language operators in decreasing order of precedence

Additionally, since most operators are meaningfully defined only over certain
values, we define operations to evaluate to error when values outside the do-
main of an operator are supplied as operands. In other words, unless otherwise
specified, the following implicit rules must be applied (in order) to all following

specifications:

A. (Strictness Rule.) If any operand to an operator is undefined (error),
the resulting value of the operation is also undefined (error). If both
undefined and error are simultaneously supplied to an operator, the

result is error.

B. (Domain Rule.) If the operands to the operator are outside the operator’s

domain, the resulting value of the operation is error.

27

We now informally describe the behaviors of operators in the classad lan-

guage.

Arithmetic Operators

All arithmetic operators are binary, and follow both Strictness and Domain
Rules. The domain for arithmetic operators is numeric values, i.e., the integer
and real values. With the inclusion of the following rules, arithmetic in the

classad language occurs in “the natural way.”

1. If the divisor is zero in the case of the division (/) and remainder (%)

operators, the evaluation result is error.

2. If one operand is integer and the other is real, the integer operand is
promoted to a real, and the evaluation proceeds as a computation of real
numbers. Unless the expression violates any of the previous rules, the

type of the evaluation result is real.

Comparison Operators

All comparison operators are binary and, with the exception of the is and isnt
operators, follow both Strictness and Domain Rules. The following rules define

the behavior of strict comparison.

1. Only values of the same type may be compared. The only exception to
this rule is that integers and reals may be compared — the integer is

promoted to a real, and comparison proceeds as with real values.

28

. Only scalar values may be compared. Comparison of aggregate values

(i.e., classads and lists) results in error.

. (Boolean specialization.) The false value is defined to be less than the

true value.

. (String specialization.) All string comparisons are case-insensitive, so
"FOO", "f00" and "f0o" are all equivalent. Strings are ordered lexico-

graphically, ignoring case.

. (Absolute time specialization.) An absolute time value is defined to be
less than another if the timestamp it represents temporally precedes the

timestamp represented by the other comparand.

. (Relative time specialization.) Shorter intervals are less than longer inter-

vals.

The non-strict comparison operators is and isnt implement the “is identical

to” and “is not identical to” predicates, and can therefore be used to test if

given values are undefined or error. By definition, these operators follow

neither Strictness nor Domain Rules — these operators always evaluate to true

or false. The following rules, when applied in order, summarize the behavior

of the is operator — the isnt operator is simply the boolean negation of the

is operator.

1. If the types of the two comparands differ, the result of the comparison is

false.

29

2. If the type of one comparand is undefined (error), the result of the
operation is true if the other comparand is also undefined (error), and

false otherwise.

3. Comparison of aggregate values is not allowed, so the result of the is

operator is false if either operand is an aggregate value.

4. Comparison of string values is case sensitive. This behavior is different

than that of the strict comparison operators.

5. Otherwise, the is operator behaves exactly like the equals comparison

operator (==).

Bitwise Operators

The bitwise operators follow both Strictness and Domain rules, and are applica-
ble only to integer values. The operators behave identically to their counterparts

in the Java programming language.

Logic Operators

The logic operators OR (1) and AND (&&) are non-strict operators, and there-
fore do not follow the implicit Strictness Rule. Instead the operators follow the
truth tables supplied below, in which T, F, U and E stand for true, false, un-
defined and error respectively. If any operand does not evaluate to a boolean,

undefined or error value, the result of the operation is error.

30

AND | F | T|U|E OR|F|T|U|E NOT
F F|F|F|E F |F|T|U|E F T
T |F|T|U|E T |T|T|T|E T F
U |[F|U|U|E Uu|u|T|U|E U | U
E |E|E|E|E E |EIE|E|E B B

Miscellaneous Operators

The Subscript Operator The subscript operator is a binary operator that
follows both Strictness and Domain Rules. It requires one list type operand
(i.e., an array), and one integer type operand (i.e., an index). If the sup-
plied index is not a non-negative integer less than the length of the array,
the operation evaluates to undefined. Otherwise, the result of the oper-
ator is the value of the index’th expression in the array (with zero based

indexing).

The Conditional Operator The conditional operator is the only ternary op-
erator in the classad language. It follows the Strictness and Domain rules
only with respect to its first operand (the condition), which is required
to be boolean. The result of the evaluation is the value of the second
operand (the true consequent) if the condition evaluates to true, and the
value of the third operand (the false consequent) if the condition evaluates

to false.

31

2.4.5 Attribute References

Attribute references in the classad language are similar to both variable refer-
ences in programming languages like C and C++, and filenames in the UNIX
filesystem. In the following description of the three variants of attribute refer-
ence expressions, attr denotes a case-insensitive identifier and expr denotes an

arbitrary expression.

attr This attribute reference variant has two possible behaviors. If attr is one
of the following special built-ins, the reference evaluates to certain pre-

defined values.

1. The self attribute reference evaluates to the classad that serves as

the current scope of evaluation.

2. The root attribute reference evaluates to the classad that serves as

the root of the evaluation.

3. The parent attribute reference evaluates to the classad that is the
lexical parent of the current evaluation scope. If the current evalua-
tion scope is the root scope, the parent attribute reference evaluates

to undefined.

If the reference is not one of the above three special built-ins, the reference
evaluates to the value of the expression bound to the attribute named attr

in the closest enclosing scope. (The obtained expression must be evaluated

32

in the same scope that it was found.) If no such attribute is found, the

reference evaluates to the undefined value.

.attr This attribute reference variant evaluates to the value of the expression
bound to the name attr in the root scope, when evaluated in the root
scope. If the root scope does not contain an attribute named attr, the

value of the reference is undefined.

expr.attr This variant first evaluates the expression ezpr, which must evaluate
to a classad. (If this expression evaluates to undefined, the value of the
entire reference is undefined. Otherwise, if the value is not a classad, the
value of the reference is error.) The value of the reference is the value of
the expression bound to the attribute named attr in the closest enclosing
scope beginning with the classad scope identified by expr. As with previous
variants the identified expression must be evaluated in the scope it was
obtained from, and if no such expression exists, the value of the reference

is undefined.

2.4.6 Function Calls

The classad language provides a number of built-in utility functions to perform
tasks such as string pattern matching, obtaining the current time of day, con-
verting values from type to another and testing value types. A comprehensive

list of functions and their behaviors is provided in Appendix A.

33

2.4.7 Circular Expression Evaluation

It is trivially possible for expressions in the classad language to refer to each
other in a manner that would lead to an infinite loop during expression evalua-
tion. For example, in the classad [a=b; b=a], it is not possible to determine the
value of either attribute. The classad language defines that circular expression

evaluation result in the undefined value.

2.5 Example ClassAd Policies

2.5.1 Workstation Access Control

Figure 4 shows a classad that describes a workstation and demonstrates the
flexibility of the mechanism in expressing fairly sophisticated policies. The
Constraint attribute indicates that the workstation is never willing to run
applications submitted by users “rival” and “riffraff,” it is always willing to run
the jobs of members of the research group, friends may use the resource only if
the workstation is idle (as determined by keyboard activity and load average),
and others may only use the workstation at night. The Rank expression states
that research jobs have higher priority than friends’ jobs, which in turn have

higher priority than other jobs.

34

L

Type = "Machine";

Activity = "Idle";

KeybrdIdle = ’00:23:12’; // h:im:s

Disk = 323.4m; // mbytes

Memory = 64m; // mbytes

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "SOLARIS251";

KFlops = 21893;

Name = "foo.cs.wisc.edu";

ResearchGp = { "raman", "miron", "solomon" };

Friends = { "calvin", "hobbes" };

Untrusted = { "rival", "riffraff" };

Rank = member (other.Owner, ResearchGp) 7 10 :
member (other.Owner, Friends) ? 1 : 0;

Constraint = !member(other.Owner, Untrusted) && Rank>=10 ? true :
Rank>0 ? LoadAvg < 0.3 && KeybrdIdle>’00:15’°
DayTime()<’8:00° || DayTime()>’18:00’

]

Figure 4: Workstation Access Control
2.5.2 Time-Dependent Resource Preference

Customers may incorporate environment specific information to improve the
quality of service delivered to their applications. For example, many of the uni-
versity’s workstations that are used for instructional purposes exist in computer
laboratories that are locked during the night. Thus, it is beneficial for applica-
tions to run on these machines after hours, as they will not be preempted by
machine owners during this time.

Figure 5 describes a job that has the policy of running only on INTEL

35

machines with sufficient memory and disk space, running the Solaris 2.5.1 op-
erating system. In addition, the Rank expression in the job classad expresses a
preference for running on instructional machines during the night over running
on a machine that has been idle for a long time (and is therefore likely to remain

unused), which is in turn preferred over running on any other machine.

Type = "Job";
CompletionDate = undefined;
RemoteSyscalls = true;

Checkpoint = true;

QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00’;
Owner = "raman";

Cmd = "run_sim";

Iwd = "/usr/raman/sim2";

Args = "-Q 17 3200 10";

ImageSize = 31M;

Rank = DayTime()>’20:00° && DayTime<’8:00’ &&

other.IsInstructional ? 10 :
other.KeybrdIdle>’3:00’ ? 5 : O;
Constraint = other.Type=="Machine" && Arch=="INTEL" &&
OpSys=="SOLARIS251" && Disk >= 10M &&
other.Memory >= self.ImageSize

Figure 5: Time Dependent Resource Preference

2.5.3 Time-Dependent Resource Constraints

We now present an example in which a customer varies the resource constraint
over time. In the example illustrated in Figure 6, the customer waits for up to
two hours for a resource with at least one gigabyte of memory. If a match hasn’t

been found with two hours, the customer downgrades the resource requirement

36

to a resource that has at least half a gigabyte of memory. The Rank expression

states that machines with larger memories are preferred. In this example, the

Type = "Job";
CompletionDate = undefined;
RemoteSyscalls = true;

Checkpoint = true;

QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00’;
Owner = "raman";

Cmd = "run_sim";

Iwd = "/usr/raman/sim2";

Args = "-Q 17 3200 10";

ImageSize = 31M;

ElapsedTime = CurrentTime() - QDate;

Rank = other.Memory;

Constraint = other.Type=="Machine" && Arch=="INTEL" &&

OpSys=="SOLARIS251" &&
other.Memory >= (ElapsedTime>’2:00’70.5G:1.0G)

Figure 6: Time Dependent Resource Constraints

customer will reject machines with less than one gigabyte of memory for the first
two hours, hoping for a better match. This policy is therefore fundamentally

different from one that merely prefers machines with larger physical memories.

2.6 Useful ClassAd Processing Algorithms

The generality of classad expressions is the source of the classad language’s
flexibility and expressive power. However, this generality also incurs costs that
affects the performance of the matchmaking scheme. In this chapter, we describe

classad processing algorithms that assist in the efficient management of classads

37

by discovering and simplifying the structure of classad expressions. These al-
gorithms are extremely useful as fundamental operations in defining a more
streamlined and efficient matchmaking process. We describe these algorithms

and their usefulness in the context of the matchmaking scheme.

2.6.1 Specialization

Classad constraints are formulated as a combination of predicates that define
conditions that must be met for a successful match. Common patterns of such
conditions include time-specific predicates and comparisons of the attributes of
candidate match classads with local attributes. For example, a machine may
declare that it is unavailable between 9:00am and 5:00pm, and only applications
with an image size less than the available virtual memory are admitted. Many
variables involved in specifying such policies may be resolved before the clas-
sad is actually tested against candidate matches. For example, the advertising
principal of the machine in the above scenario may decide to not advertise if it
determines that it is unavailable given the current time of day. Since the current
time of day is a constant at the time of advertisement, the specialization mech-
anism may be invoked to substitute this value into, and therefore simplify, the
advertisement’s constraint. In similar spirit, the known available virtual mem-
ory size may be substituted for the virtual memory variable in the example, to
yield a simpler constraint.

We call the above process specialization, since a more general and complex

38

expression is specialized to a simpler expression given known values. The pro-
cess of specialization may be viewed either as constant folding, similar to the
process commonly used in optimizing compilers, or as partial evaluation, since a
constraint is simplified when faced with known static inputs and unknown dy-
namic inputs. Algorithmically, these view points are similar due to the absence
of iterative structures and user-defined procedures in the classad language.

Specialization is intuitively similar to ordinary evaluation, except that the
result of specializing an expression whose value is unknown is not the unde-
fined value, but the expression itself. When adequate information is available,
these “expression results” are squashed or propagated by operators analogous to
the undefined value. For example, false && other.x > 10 would specialize
to false, and true && other.x > 10 would specialize to other.x > 10. Fur-
thermore, constants are aggregated appropriately to yield simpler expressions,
so 3 + a + 7 would be specialized to 10 + a.

The utility of specialization is threefold:

1. Specialization provides advertising principals with a mechanism to deter-
mine their current availability accurately and efficiently. In the context of
the policy specified above, if a classad was advertised for the machine be-
tween 9:00am and 5:00pm, the absence of a match from the matchmaker

could signify one of several possible situations.

e There are no customers in the system.

e The machine does not match the constraints of any customer.

39

e The machine is unavailable to all current customers, but is available

to some (possibly hypothetical) customer.

e The machine is unavailable to all customers.

While identifying the first two situations is not very important to the
machine’s access control mechanism, differentiating between the last two
situations is often very important. For example, the resource agent used
in Condor uses a specialization mechanism to determine if it is in “owner
state” (i.e., unavailable to all) or not. The agent’s behavior differs con-

siderably between owner and non-owner states.

. Specialization reduces the number of classads that must be considered
when matchmaking. If an agent can determine that it is unavailable to
everybody given its current state and constraints, it need not publish
an advertisement. The matchmaking algorithm may therefore typically
be run on problem instances of reduced size compared to a framework

without specialization.

. Specialization makes the matchmaking algorithm more efficient, since spe-
cialized constraints consist only of the minimal expressions that must be

verified vis a vis candidate matches.

40

2.6.2 External Reference Determination

Since principals in the system do not know which of their attributes are of
interest to candidate matches a priori, there is an incentive for principals to
describe themselves comprehensively to attract as many candidate matches as
possible. Thus classads may include a very large number of attributes. At
any given time, however, most of these attributes may not be accessed by any
principal. It is therefore useful to identify exactly which attributes of principals
are of interest at any point in time, following which processing techniques that
focus on the efficient management of these attributes may be applied, leading
to a more efficient matchmaking scheme.

The algorithm to determine the set of “interesting attributes” is a modifi-
cation of a bound/free variable analysis algorithm that returns the set of free
variable references given a classad and its constraints, i.e., the external refer-
ences of a classad. Given a set of request classads, the set of offer attributes
that are accessed by the requests is simply the union of the external reference
sets of each request classad. Similarly, the set of request attributes accessed is
the union of the external references of the offer classads.

The external reference algorithm is similar in some ways to the special-
ization algorithm discussed previously. However, the algorithm is simpler in
many ways, since it is only an identification algorithm and does not include
any notion of optimization. Indeed, external references may be determined by

the specialization algorithm since the specialization algorithm must be able to

41

identify external references for correct operation. Nevertheless, it is instruc-
tive to decouple these algorithms conceptually since their respective outputs
are used in fundamentally different ways: while specialization facilitates intra-
classad optimization and efficient verification of individual constraints, external
reference determination facilitates inter-classad optimizations and efficient bulk

matching, as detailed below.

1. While it is possible for every classad in the system to be unique, the ex-
ternal reference algorithm provides a basis for defining a notion of classad
similarity. For example, the combination of various architectures, op-
erating systems, virtual memory sizes and load averages may result in
completely distinct machine classads. However, if all jobs only access the
architecture and operating system attributes, all machines with the same
architecture and operating system attributes are essentially identical (with
respect to jobs). A summarization algorithm based on this observation is

described in Section 5.8.

2. Identifying the external reference sets of resources and offers provides a
concrete basis for formulating efficient matchmaking algorithms. For ex-
ample, our framework employs an indexing scheme to efficiently identify
compatible classads (see Chapter 4. Since the cost of indexing every clas-
sad attribute could be prohibitive, the algorithm only indexes attributes

that are in the external reference sets of candidate matches.

42

2.7 Related Work

Semi-structured data models such as XML [9] and OEM [4] are finding widespread
use due to their ability to represent and manage distributed and heterogeneous
information. As a result, languages such as Lorel [4], XML-Query [12] and
UnQL [7] are being developed to query these semi-structured databases. The
classad data model distinguishes itself from these data models by including not
only schema and data, but also a query in a single specification.

Features of the classad language distinguish our matchmaking framework
from similar systems. Some multi-agent environments distinguish between the
messaging language, which is used to post and retract advertisements, and the
content language, which is used to describe services and requests that require
matching. Since messaging interactions are abstracted by the matchmaker pro-
tocol in our framework, we neither require nor preclude the use of any specific
messaging language. KQML [15] (Knowledge Query and Manipulation Lan-
guage) is a common and popular messaging language, used in many systems
including ACL and RETSINA, discussed below.

In general, knowledge-base description of agents is common in systems that
facilitate inter-operation between general purpose autonomous agents. ACL [22]
(Agent Communication Language) combines the KQML messaging language
and the KIF [44] content language to enable inter-operation of programs. As

in matchmaking, agents register their interests and capabilities to a facilitator

43

(which behaves like a matchmaker). Unlike many other frameworks, the facil-
itator in ACL is capable of sophisticated processing. For example, facilitators
are capable of forwarding requests to other agents that can handle them, decom-
posing requests to be handled by multiple agents and then combining results to
form the answer, forwarding advertisement information to monitoring agents,
and translating information to match agents’ vocabularies. Facilitators use au-
tomated inference to reason about agent specifications and application-specific
facts.

The RETSINA [48] multi-agent infrastructure uses the LARKS [50] lan-
guage to represent services and requests. Advertisements in the language have
input and output variables (whose types must be declared), on which “input”
and “output” constraints may be specified. Constraints are expressed as Horn
clauses (plans are underway to upgrade constraints to full Prolog programs),
and support is provided for inferencing to enable automated reasoning. An on-
tological description of words used in the advertisement may be defined using
the ITL concept definition language [51] and included in the advertisement.

ACL and RETSINA employ powerful languages so that general behavioral
specifications of agents may be expressed in advertisements. Since we are not
interested in a generalized matchmaking meta-architecture, but rather a special-
ized matchmaking framework for resource management, we employ the simpler
classad language, which appears to be sufficiently powerful. In contrast to the

knowledge-base representations used in KIF and LARKS, the classad language

44

uses a database representation. Expression evaluation semantics are simple and
lightweight, facilitating efficient and robust implementation.

Globus [17, 11] defines an architecture for resource management of au-
tonomous distributed systems with provisions for policy extensibility and co-
allocation. Customers describe required resources through a resource specifi-
cation language (RSL) that is based on a pre-defined schema of the resources
database. The task of mapping specifications to actual resources is performed
by a resource co-allocator, which is responsible for coordinating the allocation
and management of resources at multiple sites. Using RSL, customers may pro-
vide very sophisticated resource requirements, but servers have no analogous

mechanism.

45

Chapter 3

The Gangmatching Model

3.1 Goals

3.1.1 The Benchmark Problem: License Management

Our multilateral matchmaking research is primarily motivated by the follow-
ing real-world license management problem that exposed the inadequacy of a
purely bilateral matchmaking framework. The scenario consists of a number
of jobs, each of which requires a machine and a license to run the application.
Licenses are limited in quantity, and each license is only valid on some subset
of machines. Thus the workstation and license resources required by each job
are inter-dependent.

This license management scenario cannot be accommodated by a bilateral
matchmaking framework. Due to the interplay between limited quantities of
licenses and validity of individual licenses on several (but not all) machines,
statically partitioning machines or jobs into “license categories” is not feasible.
Licenses must therefore be treated as first-class resources with advertisement,

matching and claiming phases. Matches in this scenario however now consist of

46

three advertisements: job, machine and license.

A primary goal of our research is the formulation of a general multilateral
matchmaking framework that can accommodate both the above license man-
agement problem and the original bilateral formalism as special cases. The
license management problem serves not only to motivate our research efforts,
but also as a as a “benchmark problem” that we use to measure the efficacy and
efficiency of our proposals. We justify the choice of the benchmark problem as

follows.

1. The license management problem has been encountered in practice, and

is therefore real.

2. The problem is simple enough to only require a few modeling parameters.
Thus a comprehensive study of the problem’s parameter space may be

conducted.

3. The problem is complex enough to shed light on the basic issues of mul-

tilateral matchmaking models and algorithms.

3.1.2 Decentralized Management

A key goal in our framework is facilitating the specification and implementa-
tion of policy at the granularity of single principals. By this we mean that we
want to provide both servers and customers with a framework that enables rep-

resentation of idiosyncratic policies effectively, as judged by the expectations

47

of the principals themselves. This goal precludes the imposition of any kind
of “global schema” to describe resources and customers, as the legislation of
such a schema would require a priori knowledge of all resources that may ever
participate in the environment. Such knowledge is impossible to obtain and
fix in dynamic, heterogeneous and continually evolving environments. Such an
approach also divests principals of the means to represent themselves individu-
alistically. We therefore employ an expressive and flexible semi-structured data
model to describe principals.

The use of a semi-structured data model with no centralized control, how-
ever, exposes two difficulties. First, there is a possibility of information missing
from certain descriptions. The solution to this problem is provided by the un-
defined value of the classad language (see Chapter 2). The second difficulty
with this stance is the possibility of semantic incompatibility, which can man-
ifest itself in two ways. First, attributes with the same name across different
descriptions may represent incompatible concepts. For example, it is possible
for a customer to ask for a green fruit and be presented with a curvaceous
translucent computer instead. The dual problem occurs when the same concept
is mapped to different attributes across different descriptions, such as “Cost”
and “Price.” In the absence of a pre-defined schema, a common solution to the
above problem is to employ a concept definition meta-language, which can then
be used to map abstract properties to concrete attributes.

However, we believe that resource management environments evolve much

48

like communities, and as with such communities, informal agreements and con-
ventions are quickly established as the system is used because it is in the interest

of both providers and requesters to reach such agreements.

3.1.3 Provider/Requester Symmetry

While all resource management systems allow resource customers (usually jobs)
to qualitatively and/or quantitatively describe required resources, none of the
systems provide resources with the same degree of control and expressiveness
vis a vis customers, reflecting implicit assumptions about resource behavior and
preferences. We argue from experience that such assumptions cannot be made
when resources are distributively owned — we have observed the necessity of
expressive distributed policy definition on (possibly) a per-resource basis.

We therefore believe that it is imperative that the resource management
model invest customers and resources with the same facilities and mechanisms.
It may be necessary for certain implementations of the matchmaking model to
introduce asymmetries in certain environments, such as introducing priorities
that affect customers but not resources. Nevertheless, these asymmetries should
be encapsulated in replaceable modules, and should not pervade the overall

model.

49

3.1.4 Single Clearing-House Abstraction

We believe that the system must provide both servers and customers with a
single “clearing-house” abstraction. The absence of such an abstraction greatly
complicates the specification and implementation of policies, as it would not
be possible to easily determine if a principal’s preferences have been honored
correctly (i.e., if the global best match has truly been identified, or the match
is only locally best). A single image abstraction provides an intuitive basis
for defining the guarantees made by the matchmaker with respect to a prin-
cipal’s policies. From the resource management perspective, this abstraction
also allows the flexibility of defining priorities over the entire system, to enforce
pool-wide fairness.

The matchmaking architecture is inherently hybrid, with centralized match-
making and distributed claiming. This architecture incorporates many of the
advantages of both centralized and distributed implementations: centralized
matchmaking simplifies administration and control, and defines a clear and in-
tuitive basis for defining matchmaking algorithm semantics, while distributed
claiming disperses the responsibility of establishment and management of allo-
cations, resulting in a more scalable solution.

It is important to note that we are not necessarily advocating a central-
ized implementation of the matchmaker, although this approach is the sim-

plest method of achieving a single system image. It is certainly conceivable

50

for a distributed matchmaking implementation to provide a single system im-
age abstraction, along with the implied benefits of parallelization: increased
scalability, availability and reliability. Our implementation, however, employs
a centralized matchmaker and therefore inherits the advantages of a central-
ized implementation: simplicity and ease of administration. The performance

difficulties associated with this approach are addressed in this body of work.

3.1.5 Support for User and Administrative Policy

Matchmaking systems are distributed policy environments. Whereas conven-
tional resource managers are driven by centralized mechanisms that emphasize
system-wide administrative policy, the matchmaking model is motivated by
distributed, fine grained per-principal user policy. However, user policy cannot
completely supplant administrative policy in a resource management system.
Administrative concerns about controlling preemption, pool usage and fairness
cannot be expressed as user policy issues. We therefore state the necessity of
administrative policy mechanisms as a goal of the matchmaking framework.
Due to the opportunistic, idiosyncratic and dynamic nature of matchmaking
environments, administrative policies must also be expressed with similar mech-
anisms as the advertisements themselves. Administrative policy mechanisms
therefore complement user policy mechanisms to define additional constraints

and preferences with which customers and servers may be matched.

51

3.2 Language Representations

3.2.1 Attribute Interpretation and Meaning

The classad language is a partial solution to the substantial language subprob-
lem of matchmaking. However, the classad language by itself is insufficient as
a complete matchmaking solution because it does not include any mechanisms
that define semantics to attribute names, and therefore does not provide a ba-
sis for “attribute interpretation.” It is important to note that the problem of

attribute interpretation occurs at three distinct levels.

1. Some attributes of the advertisement must be interpreted by the match-
maker so that the advertisement may be meaningfully included in the

matchmaking process.

2. Other attributes are interpreted by the administrative policy enforced in

a particular resource management environment.

3. Meanings of most other attributes are of interest to match candidates,
who express user policies via constraints and preferences under basic as-

sumptions and expectations of what the referred attributes mean.

We are careful to distinguish these three cases because we believe that the
solutions to the above problems require different approaches. Since the match-
maker assumes the responsibility of ensuring that the requirements of entities

are satisfied, the matchmaker is only interested in identifying the quantitative

52

and operational aspects of the advertisement. This level of interpretation is
different from that performed by the administrative policies specified in match-
making environments, since the latter require certain attributes to be present
in advertisements so that the defined policies may be enforced. While the inter-
pretation performed by the matchmaker is a basic infrastructural necessity of
all matchmaking environments, the interpretation performed by administrative
policy only occurs in particular instances of matchmaking environments. In
contrast to both of the above, motivated by their imperative to find an entity
that satisfies their constraints and preferences, candidate partners are interested
in the descriptive attributes of principals.

To enable unambiguous representation of principals to matchmakers, we de-
fine simple representation conventions as part of the advertising protocol, which
is part of the matchmaking algorithm component of a matchmaking environ-
ment. These conventions merely enable the matchmaker to determine basic
operational aspects of the advertising entity, such as how many candidates are
required by the advertising entity to be satisfied, and where the constraints and
preferences of the entity are expressed. Since these conventions only change
when the entire matchmaking model is revised, this “fixing” of the semantics of
some attributes does not hamper the agility of the framework in dealing with
dynamic and heterogeneous principals — all principals that participate in the

matchmaking environment must adhere to these simple conventions.

93

In contrast, we do not define explicit mechanisms to define the seman