
1 Introduction

The Condor high throughput distributed system is underpinned by the matchmaking process which performs
distributed resource allocation. While the implementation of matchmaking is quite robust, the tools for
identifying and explaining why a resource request does not find any matching resource offers are somewhat
insufficient (see Figure 1). In order to provide a more detailed analysis of such a scenario, new code must
be developed and new algorithms must be designed. This paper describes a research project with the intent
of implementing robust matchmaking analysis and integrating it with the current Condor user tools.

The research I have conducted prior to the initiation of this project has been directed towards developing
the algorithms necessary for matchmaking analysis, and implementing a prototype analysis tool in Java. The
scope of this project consists of the implementation of matchmaking analysis in C++ and the integration of
this code with current Condor tools also written in C/C++. Due to time restrictions and other commitments,
only a subset of the algorithms present in the Java prototype were implemented in the C++ version.

2 The Project - A Tale of Two Ports

The long term goal of this project was to incorporate ClassAd analysis algorithms into the Condor user tools,
in particular condor q. The completion of this project rested on the completion of two orthogonal ports.
The first was to port the Condor user tools (condor status and condor q) and the supporting infras-
tructure from old ClassAds to new ClassAds. Aside from a much cleaner implementation, new ClassAds
offer extra added functionality that is integral to robust ClassAd analysis. The second port was to rewrite
the existing Java implementation of ClassAd analysis in C++. This port was necessary for the integration of
the Condor tools, the C++ ClassAd library, and the ClassAd analysis algorithms.

2.1 Porting Condor Tools to New ClassAds

The two Condor user tools selected for the port to new ClassAds were condor status and condor q.
The former allows the user to get useful information from a Condor pool. While not directly relevant to
matchmaking analysis, condor status was a good place to start the port. More important is the latter,
which allows the user to query the job queue. condor q (with the -analyze option) is currently the only
source of information about unmatched jobs. Typical feedback from condor q -analyze can be seen
in Figure 1. As stated before, the main motivation of this research is to provide a more detailed analysis of
the unmatched job scenario.

27989.000: Run analysis summary. Of 715 resource offers,
688 do not satisfy the request’s constraints
27 resource offer constraints are not satisfied by this request
0 are serving equal or higher priority customers
0 do not prefer this job
0 cannot preempt because PREEMPTION_REQUIREMENTS are false
0 are available to service your request

Figure 1: Typical output of condor q -analyze

So called “new” ClassAds are a more sophisticated implementation of the ClassAd language, than the
“old” ClassAds currently in use in the Condor v6.x releases. Firstly the ClassAd code is decoupled from
its ancestor the “AttrList”, which was a simple list of resource attributes. This decoupling allowed for the
development of a new paradigm, in which a ClassAd could be contained in another ClassAd, providing

1



the framework for multilateral matching. As a practical matter, and aside from the benefits to this project,
porting the Condor user tools to new ClassAds is useful in two ways. All of Condor will have to be ported to
new ClassAds eventually, so porting these tools will provide something of a head start. Also, the experiences
gained from the port may be useful when the rest of Condor begins using new ClassAds.

The paradigm shift directly impacts this project in two important ways. One added functionality of the
new ClassAd libraries is the ability to carry out a partial evaluation or “flattening” of a ClassAd expression.
This feature is invaluable to ClassAd analysis, where a partial evaluation of a requirements expression results
in an expression containing only externally defined variables. A second but less crucial feature of the new
paradigm is the ability to nest ClassAds. This comes in useful for expressing results of an analysis in a
hierarchical fashion.

The porting itself encompassed the modification of not only the front ends of the user tools, but all of
the back end code that supports them. Though each piece of code required different modifications, the port
could be summarized in four seperate parts:

1. API Shift - The simplest modifications were replacing deprecated old ClassAd methods with their
new ClassAd equivalents. As an example the function call to EvalString had to be replaced with
EvaluateAttrString.

2. Matchmaking - This was a slightly more complicated conversion, as the matchmaking framework in
old ClassAds bears no resemblance to the new ClassAd equivalent. This also brought up an issue with
the new implementation which uses nested ClassAds to build what is called a MatchClassAd. The
structure of a MatchClassAd can be seen in Fiqure 2. The MatchClassAd deals with back compatibil-
ity in that references to my and target are equivalent to self and other. However, this structure
does not support implicit attribute references to the target ClassAd such as Arch == ‘‘INTEL’’
instead of other.Arch == ‘‘INTEL.’’One can explicitly set the parent scope of the ClassAd
to be the target, and then vice versa for a symmetric match, but then the explicit attribute references
are not supported. In the Java ClassAd implementation both implicit and explicit attribute references
are supported in matchmaking. Perhaps the C++ version should adopt the Java version’s framework.

3. ClassAd Conversion on the Wire - The C++ ClassAd API includes back compatibility methods getOld-
ClassAd and putOldClassAd which convert server side old ClassAds to client side new Clas-
sAds and vice versa. These methods replaced the old get and put methods from old ClassAds,
but two unanticipated complications arose during the port. First of all, new functionality had to be
added to the ClassAdUnparser to print the meta-equals and the meta-not-equals operations old Clas-
sAds style: =?= and =!= as opposed to is and isnt to prevent the server side from choking upon
reciept of a ClassAd. Secondly, a third method getOldClassAdNoTypes had to be implemented
to replace the old AttrList get method used in condor q which did not support ClassAd types.

4. Updating Data Structures - Two data structures, ClassAdList and AttrListPrintMask, were an integral
part of the Condor user tools. The former is a list of ClassAds that supports sorting by attribute
values, and the latter facilitates tabular printing of ClassAds. Both classes were heavily dependent
on old ClassAd and AttrList methods. ClassAdList had to be completely rewritten as a wrapper for
a ClassAd instantiation of the List template. AttrListPrintMask required fewer modifications, but for
the sake of clarity its name was changed to ClassAdPrintMask.

2.2 Porting Java Code to C++ Code

As previously stated, only a subset of the Java code has been ported to C++. This code focuses on job
ClassAd analysis at the granularity of atomic boolean expressions know as Conditions. The resulting feed-
back identifies which Conditions the user should keep, and which should be removed so that some subset of

2



[
symmetricMatch = leftMatchesRight && rightMatchesLeft;
leftMatchesRight = adcr.ad.requirements;
rightMatchesLeft = adcl.ad.requirements;
leftRankValue = adcl.ad.rank;
rightRankValue = adcr.ad.rank;
adcl =

[
other = .adcr.ad;
my = ad; // for condor backwards compatibility
target = other; // for condor backwards compatibility
ad =

[
// the ‘‘left’’ match candidate goes here

]
];

adcr =
[

other = .adcl.ad;
my = ad; // for condor backwards compatibility
target = other; // for condor backwards compatibility
ad =

[
// the ‘‘right’’ match candidate goes here

]
];

]

Figure 2: The structure of a MatchClassAd

the resource offers are accepted by the job Requirements expression. Though this is only a fraction of the
functionality needed by a robust analysis tool, it still requires a fair amount of supporting code.

The following classes and structures have been implemented:

• ResourceGroup - A wrapper for a List of ClassAds representing resource offers. The level of abstraction exists
to facilitate a smooth transition to ClassAd Collections.

• BoolExpr - A base class for ClassAd expressions which are expected to evaluate to a boolean value given a
sufficient context.

– Condition - A BoolExpr of the form ATTR OP VALUE.

– Profile - A BoolExpr consisting of a conjunction of Conditions

– MultiProfile - A BoolExpr consisting of a disjunction of Profiles

• BoolVal - An enum type representing literal values in the four valued logic of the ClassAd language.

• BoolVector - A wrapper for an array of BoolVals

– AnnotatedBoolVector - A BoolVector with annotations indicating how many and which contexts (resource
offers) it represents.

• BoolTable - A wrapper for a two dimentional array or table of BoolVals.

• Explain - A base class for a repository for results of an analysis. Subclasses ConditionExplain, ProfileExplain,
and MultiProfileExplain are self-explanatory (so to speak).

3



• Analysis - Where everything comes together. A Library of methods which perform functions key to the overall
analysis.

Aside from the renaming of a few classes, the above list corresponds to classes in the original Java code.
As expected, a number of issues came up during the implementation of these classes as there are fun-

damental differences between Java and C++. The availability of templates (namely the List template) was
quite helpful and reduced the need for explicit casting that is so ubiquitous in Java. On the other hand, the
abscence of exceptions required that most methods return a boolean value for failure/success. Also, passing
objects as parameters was avoided if possible, and passing arrays as parameters was avoided completely.
When necessary objects were passed by reference. Finally, in an attempt to avoid memory allocation in
constructors, all classes were equipped with an Initmethod which handles memory allocation and returns
a boolean success value.

2.3 Putting It All Together

Once the condor tools had been updated to use new ClassAds, and the infrastructure for job requirements
analysis had been implemented in C++ it was time to bring the two pieces together. The entry point for
the matchmaking analysis code is clearly condor q -analyze. At this point in the condor q code we
have a ClassAdList containing all available resource offers and a single ClassAd representing the request.
These two objects are passed to the analysis API.

Next, the offer list is converted to a ResourceGroup, and the Requirements expression from the request
is flattened and converted to a MultiProfile. For each Profile in the MultiProfile a BoolTable was built with
columns representing resource offer ClassAds, rows representing individual Conditions, and entries corre-
sponding to evaluating the given Condition in the context of the given resource offer. The BoolTable is used
to deduce the best suggestion to the user. When the ideal suggestion has been computed, the appropriate in-
formation is stored in the varous Explain objects. Finally the information in the Explain objects is presented
in text form.

An example of the output is shown in Figure 3. While this example does not show off the full func-
tionality of job requirements analysis, it underscores the further work that needs to be done. First of all it
is clear that some of the Conditions are redundant, and secondly this example begs analysis of the Require-
ments expressions of the 27 machines that did match the job’s constraints. This is only a sampling of the
extensions that can be built on the foundations established by this project, further examples are discussed in
the following section.

=====================
RESULTS OF ANALYSIS :
=====================

REQUIREMENTS: matched 27 of 704 offers
Profile 1 matched 27 offers
Memory > 64 matched 553 - suggestion: KEEP
Arch == "INTEL" matched 576 - suggestion: KEEP
OpSys == "SOLARIS26" matched 78 - suggestion: KEEP
"INTEL" == Arch matched 576 - suggestion: KEEP
"SOLARIS26" == OpSys matched 78 - suggestion: KEEP
Disk >= 5332 matched 701 - suggestion: KEEP

=====================

Figure 3: Results of matchmaking analysis for the job in Figure 1

4



3 Future Work

Clearly much more work needs to be done with the ClassAd analysis code in order for it to be robust
enough to be a useful extension to the current Condor user tools. First and foremost is the need for job
attribute analysis (or resource offer requirements analysis depending on which way you look at it). Most
of the required functionality for this has been implemented in the Java version, and key data structures
(Intervals and HyperRectangles) have already been implemented in the C++ version for the purpose of
more efficient matchmaking. Also quite key is the ability to detect contradictions and redundancies in
Requirements expressions. Again much of this functionality exists in the C++ implementation, so it is only
a matter of ferreting it out and adding any necessary enhancements.

Some more distant goals include analysis of arbitrarily structured molecular boolean expressions and
more complex atomic boolean expressions such as comparisons and predicates. Other goals in the long term
are dealing with nested ClassAds and multilateral matchmaking, and analyzing Rank and other numerical
expressions. A number of enhancements may be made to improve the quality of the feedback of the user.
In addition to suggesting removals of Conditions, it would be useful to suggest modifications, and identify
contextual contradictions (such as a request for a SPARC architecture running WindowsNT). Support for
a graphical user interface is also quite important, as is support for constructing expressions from Condi-
tions and Profiles. Finally, there are plenty of opportunities for performance optimization and robust error
propagation.

4 Conclusion

One conclusion that may be drawn from this project, and indeed any project involving a port from Java to
C++ is that C++ is a great deal trickier to use than Java. This is not a novel proposition, but it is worth
elaboration. While the Object Oriented model in C++ is quite similar to Java, the absence of pointers and
explicit memory management in Java leads the programmer to overlook these issues when porting to C++.
As described above the class structure of the Java prototype was maintained, but the implementation of these
classes was somewhat different. So why use C++? The standard answer to this question is that it is faster and
more widely used. The more meaningful answer is that to date most “real” application programming is done
in C++. Java may have gained popularity – and with good reason: it is a very cleanly implemented and easy
to use language – but it has not displaced C/C++ as the standard application programming language. That
being said Java is quite useful as a prototyping tool, and as such was the right place to start implementing
matchmaking analysis.

The experience of porting from old ClassAds to new ClassAds is more directly useful to the Condor
project. The majority of the port as stated was adapting to a shift in the ClassAd API, but there are some
issues with matchmaking that need to be addressed. As a side note, another porting will need to be done
when the Condor code begins using ClassAd Collections. To begin with the ClassAdList class ought to be
eliminated and replaced with a client side ClassAd Collection. The algorithms for matchmaking analysis
and even matchmaking itself will have to be reexamined to determined if ClassAd Collections can offer any
enhancements in performance.

Finally it should be noted that both ports were completed in a relatively short period of time. Now that
the basic infrastructure for matchmaking analysis is in place, it should be quite feasible to port the remainder
of the Java prototype to C++, and to implement additional functionality as well. The “new” ClassAd C++
API is quite robust and lends itself well to matchmaking analysis. What’s more, a number of bugs in the C++
API were uncovered in the process of this project. Further work in this area will have the added benefit of
rigorously testing the more experimental code in the new ClassAd implementation, in addition to providing
a robust and useful matchmaking analysis framework for Condor.

5


