
19
CHAPTER

Building Reliable Clients and
Services

Douglas Thain and Miron Livny

Traditional distributed computing is dominated by a client–server model. File
systems, databases, and hypertext systems are all designed with the assumption
that a few powerful and reliable servers support a large and dynamic set of clients.
Servers are complex and expensive, while clients are lightweight, cheap, and
simple. Servers are responsible for persistence, security, and coherence, while
clients are responsible for very little. Client software often acts directly on behalf
of an interactive user who steers the overall interaction.

Grid computing is different: a single Grid client may harness large numbers of
servers over extended time periods. For example, one client may consume more
than 100,000 CPU-hours in one week on systems distributed worldwide (443) (see
also Chapter 10). As a consequence, both Grid clients and servers are multiplexed,
multiprotocol, and multithreaded. This organization could be termed peer-to-peer
(Chapter 29) to indicate that participants are equals, although it need not be the
case that participating systems are poorly connected, particularly unreliable, or
mutually untrusting, as is often assumed in peer-to-peer computing. The key point
is that multiple parties—both consumers (clients) and providers (servers) of capa-
bilities—must act in concert to achieve an overall goal in a reliable fashion. Each
must meet obligations relating to security, performance, and progress. Thus, each
requires techniques to overcome various kinds of failure conditions, and to track
long-lived interactions that may stretch over days or weeks.

Preceding chapters have introduced the basic principles of service-oriented
architecture and OGSA (279), explained why future Grid services will have persist-
ent state and active and complex responsibilities (Chapter 17), and introduced the
notion of a service-level agreement (SLA) as a means of negotiating expectations

Chapter 19 25/8/03 12:23 PM Page 285

concerning the duties that other parties will fulfill (Chapter 18). In this chapter, we
introduce client-oriented architectures that may be used to achieve reliable distributed
execution in complex, distributed, and dynamic Grid environments. Building on
experiences within the Condor Project—which has specialized in the problem of
reliably executing jobs on remote machines for almost two decades—we present
specific techniques for use in three different contexts: remote execution, work
organization, and data output.

19.1 PRINCIPLES OF RELIABLE SYSTEMS

We first introduce some general design principles that apply to distributed systems
and, in particular, to the complex applications often found in Grid computing. We
shall encounter applications of each of these principles in our discussion of remote
execution, work management, and data output.

Effective operation requires responsible behavior. Responsibility is a common notion in
distributed computing. Random behavior is rarely acceptable; rather all parties
are required to operate within certain limits of decorum. Here are some well-
known standards of conduct:

✦ The Ethernet (474) discipline arbitrates access to a shared medium without
a central controller. The discipline expressly prohibits transmission at will.
Civilized clients must listen for a quiet interval before broadcasting, and then
double-check to make sure that transmissions were broadcast correctly. If an
accidental collision occurs, a client has the responsibility to inform others
that may be affected by using a short attention burst, and then must fall
silent again for a specified time. If Ethernet clients simply tried to “shout”
louder and faster to drown out everyone else, the medium would be entirely
unusable.

✦ The two-phase commit protocol (327) allows for the atomic acceptance of
a series of nonatomic operations. This protocol places strong burdens on both
coordinators (clients) and servers. During the assembly of a transaction,
either side may abort at will. However, once a server accepts a coordinator’s
request to prepare the transaction, it may not release it of its own accord.
Conversely, the coordinator has the obligation to try forever until it success-
fully completes a prepared transaction. An abdication of responsibility from
either side would lead to an inconsistent system and potentially the loss
of data.

19 Building Reliable Clients and Services
286

Chapter 19 25/8/03 12:23 PM Page 286

✦ The Jini (668) resource discovery system allows a client to obtain a lease on
a server. Once allocated, the server accepts the responsibility of serving only
the lessee. Likewise, the client accepts the responsibility of periodically
renewing the lease. If a communication failure prevents renewal, both sides
have the obligation to assume the lease is broken, thus preventing waste and
inconsistent states.

The client is ultimately responsible for reliability. This is a restatement of the end-to-end
design principle (570). In the final reckoning, the consumer is responsible for
his/her own well-being. The careful grocery shopper always checks a carton of
eggs for cracked shells. So too must the Grid client verify that job outputs are
coherent and complete.

Reliable services are difficult to manage. This theme is counterintuitive. It would seem
that services that make greater efforts to be resilient to failures would be more
useful and reliable. Yet, the opposite is frequently true. More reliable services
often have more complex and unexpected failure modes. Sometimes the best
service is the one that fails frequently in a predictable way.

Soft state simplifies garbage collection. As discussed in Chapter 17, soft-state mecha-
nisms (e.g., leases (323)) can simplify the recovery of resources following abnormal
(as well as normal) task termination.

Logging simplifies persistent state. Grid services that manipulate persistent state must
remember completed actions, track requests in the process of assembly, and deal
with requests that were started but perhaps forgotten. A log—a stream of event
records that survives crashes—is a standard tool for this job. Using well-known
techniques, the history and current state of a service may be easily recovered
from the log.

19.2 RELIABLE REMOTE EXECUTION

We next turn to the deceptively simple problem of reliable remote execution.
We illustrate our discussion with two examples of large-scale distributed system—
traditional Condor and Grid-enabled Condor-G—that achieve reliable remote exe-
cution in different ways. Traditional Condor, designed to deal with opportunistic
resources, focuses on the problems of ensuring that failures are detected rapidly
and forcing a quick reset to a known state. However, the techniques used to

19.2 Reliable Remote Execution
287

Chapter 19 25/8/03 12:23 PM Page 287

achieve this goal are less well suited for use in a wide-area network in which
remote servers are persistent. Condor-G allows for network disconnections while
a job is managed by a remote batch system, but this introduces new and complex
challenges for system coherency.

19.2.1 Condor

The core components of the traditional Condor distributed batch system
(Figure 19.1) form the Condor kernel. Each component must discharge a certain
responsibility, as we now describe:

The schedd is a reliable client of Grid computing services. It serves as the
entry point for end users, providing a transaction interface for submitting,

19 Building Reliable Clients and Services
288

3: Notify

1: Submit jobEnd
user

4. Verify

requirements

5: Transfer

7: Online I/O

6: Run job

User’s
job

Starter

Startd

Match
maker

Shadow

Home
disk

Schedd

job details

2. Advertise
requirements

2. Advertise
requirements

19.1

FIGURE

The Condor kernel: the seven steps to run a Condor job. (1) The user submits
the job to a schedd. (2) The schedd and the startd advertise themselves to a
matchmaker. (3) The matchmaker notifies two compatible parties. (4) Both par-
ties verify that they match each other. (5) The shadow and starter are created,
and communicates the details of the job to be run. (6) The starter executes the
user’s job. (7) If needed, the job performs I/O by communicating with the
shadow directly or through a proxy in the starter.

Chapter 19 25/8/03 12:23 PM Page 288

querying, and removing jobs. It is also responsible for persistently storing a
user’s jobs while finding places for them to execute. The schedd is responsible
for enforcing user requirements on job execution. For example, the user may
require that jobs only run on machines that have sufficient memory and that are
owned by a trusted user.

The startd is a reliable Grid computing service. It manages an execution
machine, and is responsible for finding work to be done within the constraints
placed on it by the machine’s owner. For example, an owner might permit only
jobs submitted by the “physics” group to be run during the day while allowing any
sort of job to run at night. Jobs that satisfy these requirements may also be ranked.
The same owner might prefer, but not require, jobs from the “chemistry” group at
night. When supervising a job, the startd is responsible for monitoring the state of
the machine, possibly evicting and cleaning up after a job if the owner’s require-
ments are no longer met.

The matchmaker is responsible for introducing potentially compatible con-
sumers (schedds) and producers (startds). The matchmaker accepts advertise-
ments from all parties, written in the ClassAd (538, 539, 541) resource description
language, describing their current state and the properties of the resources that
they seek. Once a potential match is found, both resources are notified. The
matchmaker is also responsible for enforcing system-wide policies that cannot be
enforced by a single schedd or startd. For example, the matchmaker controls
admission to the pool as well as the fraction of machines allocable to any given
user. It also performs accounting to track pool-wide resource use.

Although the matchmaker informs compatible parties that they are a poten-
tial match, each party still bears a responsibility to enforce its own requirements
and to translate the potential of a match into productive work. The match could
be bad if it is based on stale information or if the matchmaker is untrustworthy.
Thus, schedds and startds contact each other directly to verify that their require-
ments are still met before attempting to execute a job. Once satisfied, they may
begin to work together. However, either side may abort the match at any time if
it discovers that its requirements are no longer satisfied.

Two subprocesses—a shadow and a starter—work together to actually execute
a job. The starter is responsible for creating an execution environment at the
remote site. Like a command-line shell, it transforms a job description into the
operating system calls that actually execute it. It creates a working directory, sets
up standard I/O streams, and monitors the job for its exit status. Most import-
antly, it is responsible for informing the other Condor components whether
the job was able to execute in the available environment. Although the starter
provides all mechanisms needed to execute a job, it does not provide policies. The
starter relies entirely on the shadow to decide what to run and how to do it.

19.2 Reliable Remote Execution
289

Chapter 19 25/8/03 12:23 PM Page 289

The shadow is responsible for making all policy decisions needed by a job.
Upon request, it names the executable, arguments, environment, standard I/O
streams, and everything else necessary for a complete job specification. When the
job terminates, the shadow examines the exit code, the output data, the execution
machine, and any other relevant information to determine whether the job has
truly run to completion, or has simply failed in the current environment. The
shadow also serves as a basic data server for the job. It provides a remote I/O
channel that the user’s job may call either directly or via a proxy in the starter.
This channel may be used to fetch the executable from the home site and to per-
form online input and output. (Note that the data server role may be filled more
efficiently by third parties such as storage appliances (637) and checkpoint servers
(101). The primary responsibility of the shadow is to control how and when these
resources are used.)

We categorize these processes according to their reaction to failures. Resilient
processes are designed to handle a wide variety of error conditions via standard
techniques such as retry, logging, resetting, and notification. Brittle processes sim-
ply abort and exit upon detecting any sort of unexpected condition. As might be
expected, resilient processes can be complex to develop and debug, generally
requiring the management of persistent state and logging in stable storage. Brittle
processes are easier to create and maintain.

The shadow and starter are brittle processes. Throughout the execution of a
job, they maintain a TCP connection with each other that is used for communi-
cating both the job’s remote I/O and execution details such as the exit code and
resource use. If either side should detect that the connection is broken, it imme-
diately aborts, killing itself entirely. If the local system is not prepared to execute
a job, whether it is due to a lack of memory, an offline file system, a corrupted
operating system, or even just a bug in Condor, the same form of abort is used,
thus breaking the TCP connection and forcing the peer to take the same action.

Although these processes are brittle, they may still manipulate persistent
state. For example, both make use of local logs to record their progress. The
shadow even manipulates the job-state database stored in the schedd to indicate
the disposition of the job and the amount of resources it has consumed. If either
the shadow or starter should fail unexpectedly, the job state does not change.
Thus, the mere disappearance of a job cannot be considered to be evidence of its
success.

Neither the shadow nor the starter is responsible for cleanup. This task is left
to the resilient schedd and startd, which enforce the lease that was negotiated to
use the machine. Each process monitors the state of the machine on which it runs
as well as the disposition of its shadow and starter children. If any child process
should exit, then the resilient processes are responsible for cleaning up by killing

19 Building Reliable Clients and Services
290

Chapter 19 25/8/03 12:23 PM Page 290

runaway jobs, deleting temporary disk space, and discarding unused credentials.
Unlike Condor-G, which we describe in Section 19.2.2, no remnant of the job is
left behind after a failure.

This enforced cleanup ensures the consistency of the entire system. The
startd must not simply restart a job after a failure, because the schedd will not
necessarily know (or desire) that the job continue there. Rather, the schedd is left
free to choose the next site of the job. It might try again at the location of the last
failure, it might attempt to use another known but idle machine, or it may begin
matchmaking all over again. The schedd is charged with this responsibility pre-
cisely because it alone knows the state of the job.

The matchmaker is also a brittle process, although it has few error conditions
to encounter. If the matchmaker process or machine should crash, running
schedds and startds will not be affected, although no further matches will be
made. Once restarted, a matchmaker will quickly rebuild its state from the peri-
odic updates of startds and schedds, and the pool will operate as before.

Every machine that runs some component of Condor is managed by a
resilient master process. This process has no duty except to ensure that schedds,
startds, and matchmakers are always running. If such a service process should
terminate, whether due to a bug, administrative action, or just plain malice, the
master logs the event, restarts the process, and may inform the human system
administrator. Repeated failures are interspersed with an exponentially increas-
ing delay to prevent busy-looping on unexpected conditions. This ability to start
and stop processes is also used as a remote “master switch” to enable and disable
Condor simultaneously on large numbers of machines. The UNIX “init” process
manages the master process and thus handles system startup, shutdown, and
errors in the master itself.

This dichotomy of resilient and brittle processes has several advantages. As an
engineering model, it drastically simplifies the addition of new technologies and
features to serve running jobs. The vast majority of these are placed in the brittle
processes, where error conditions and even faulty code are cleanly handled by the
controlled destruction of the whole process. The resilient processes are naturally
more complicated, but only take part in the fundamental matchmaking interaction,
which is well debugged and unaffected by the addition of most new features.

However, the brittle interaction between the shadow and the starter has one
significant drawback. There must be a reliable network connection between the
submission and execution sites for the entire lifetime of a job. If it is broken, the
job is not lost, but a significant amount of work must be repeated. To permit
temporary disconnections between the two sites requires that both sides become
resilient processes with persistent state and a more complex interaction. Exactly
this model is explored in Condor-G.

19.2 Reliable Remote Execution
291

Chapter 19 25/8/03 12:23 PM Page 291

19.2.2 Condor-G

As discussed in Chapter 4, Grid computing technologies developed within the
Globus Project (276) provide standard protocols and services for accessing remote
resources. In particular, the Grid Security Infrastructure (GSI) (280), Grid
Resource Allocation Manager (GRAM) (205), and Global Access to Secondary
Storage (GASS) (117) protocols can be used to construct secure remote execution
systems that cross institutional boundaries while making use of existing batch sys-
tems without modification. However, the successful orchestration of these three
protocols is no small matter, requiring a client that can persistently manage a
large number of jobs even in the face of complex failures. To fulfil this role, the
Condor and Globus projects collaborated to build Condor-G (291), a Grid-enabled
agent for accessing remote batch systems.

In the Condor-G architecture (Figure 19.2), as in traditional Condor, the end
user interacts primarily with a schedd, which keeps all job state in persistent stor-
age. However, rather than specify the general requirements each job has for an
execution machine, the user must specify the specific name of a Globus GRAM
server that represents an entire remote batch system.

19 Building Reliable Clients and Services
292

1: Submit job

6: Submit job

7: Run job

3: Submit job

End
user

4: Store job details

5: Transfer data

(GASS)

(GRAM)

User’s
job

Jobmgr Remote batch queue

Gate
keeper

Gridmgr

Home
disk

Temp
disk

Schedd

2. A
uthenticate

(G
SI)

19.2

FIGURE

Condor-G architecture—the seven steps to run a Condor-G job. (1) The user submits
a job to the schedd, which creates a gridmanager for the job. (2) The Gridmanager
authenticates the user to the gatekeeper, which creates a jobmanager. (3) The
Gridmanager transmits the job details to the jobmanager. (4) The jobmanager stores
the details. (5) The jobmanager transfers the executables and input data from the
home site. (6) The jobmanager submits the job to the remote batch queue. (7) The
job executes.

Chapter 19 25/8/03 12:23 PM Page 292

For each job submitted, the schedd creates a process called a gridmanager,
which is responsible for contacting a remote batch queue and providing the details
of the job to be run. The gridmanager is analogous to the shadow in traditional
Condor. It is responsible for actively seeking out a remote batch system through
its main point of contact, the gatekeeper. Once a job begins running, the grid-
manager is also responsible for servicing the job’s input and output needs through
the GASS protocol.

The gatekeeper is responsible for enforcing the admission policies of a remote
batch queue. Using GSI, it accepts connections, authenticates the remote user,
and maps the remote credentials into a local user ID. Once authenticated, the
client may request a particular service, such as access to a batch queue through a
jobmanager. The gatekeeper creates the new service process with the local user
ID and passes the connection to the remote user.

The jobmanager is responsible for creating a remote execution environment
on top of an existing batch execution system. A variety of jobmanagers is available
for communicating with batch systems such as LoadLeveler (16) (a descendant of
Condor), LSF (702), Maui (385), and PBS (31). A jobmanager could even pass jobs
along to a traditional Condor pool like that discussed in the previous section. The
jobmanager bears a responsibility similar to that of the traditional Condor starter,
but it differs in one significant way. Unlike the starter, it uses the local batch
system to hold the details of a job in persistent storage and attempts to execute it
even while disconnected from the gridmanager. This strategy permits a system to
be more resilient with respect to an unreliable network, but also creates signifi-
cant complications in protocol design.

We use the GRAM protocol design to illustrate several important issues relat-
ing to remote interactions. An early version of the GRAM protocol design, shown
in Figure 19.3, used atomic interactions for the submission and completion of
jobs. For example, the submission of a job from the gridmanager to the jobman-
ager consisted of a single message containing the job details. Upon receipt, the
jobmanager would create a unique name for the job, store the details under that
name, and return the ID to the gridmanager. Thereafter, it would transfer the exe-
cutable and input files and attempt to submit the job to the remote batch queue.

However, a failure at any of several key points in this interaction would cause
trouble. Some crashes would result in an orphan job, left running and consuming
CPU and storage, but with no way to stop or recover it. Other crashes would result
in a wasted job, which ran successfully, but could not communicate its results
back to the submitter. For example:

✦ An orphan would be created if the network connection failed after the
jobmanager stored the job details but before it could return the job ID. In this

19.2 Reliable Remote Execution
293

Chapter 19 25/8/03 12:23 PM Page 293

case, the job would run in the batch system, the jobmanager would oversee
it, but the gridmanager would not know its ID.

✦ An orphan would also be created if the machine running the gridmanager
crashed after the job ID was returned. In this case, the job would run in the
batch system, and the gridmanager would know its ID, but there would be no
jobmanager to oversee it.

✦ A job would be wasted if any crash or network failure prevented the job
completion message sent by the jobmanager from reaching stable storage at
the submitter. In this case, the jobmanager would delete the completion
details immediately after sending the message, leaving no possibility for the
gridmanager to request them again after a failure.

These problems can be solved by the use of transactions for grouping and nam-
ing commands and the two-phase commit protocol for an orderly completion. A
standard two-phase commit protocol is shown in Figure 19.4. Here, the transaction
is created by a begin message, which causes the server to create a new transaction,
naming it with a unique ID that must be logged and is returned to the client, which
does the same. The ID is used to identify the transaction in all further messages.
One or more following data messages fill the named transaction with all of the
details the client wishes to provide. A prepare message ends the first phase, caus-
ing the server to check the transaction’s validity and fix it in permanent storage,

19 Building Reliable Clients and Services
294

Job complete

Delete job

Start job

Complete

Store done

Store ID

Job ID

Submit

Gridmanager Jobmanager

19.3

FIGURE

The original GRAM protocol used between the gridmanager and jobmanager. It
consisted of two atomic interactions: one to submit a job and one to indicate job
completion. This protocol can lead to orphaned or wasted jobs as described in the
text. A standard solution to this problem is shown in Figure 19.4.

Chapter 19 25/8/03 12:23 PM Page 294

while stopping short of actually completing the operation. In the second phase, a
commit message forces the prepared transaction to run to completion and frees the
log. An acknowledgment from the server to the client permits the client to free its
own log. At any time, an abort message (not shown) may be used to destroy the
transaction completely.

The two-phase commit protocol allows for easy recovery from a failure of
either party or the communication medium. If any message following begin is
lost, the client may resend it without harm, using the logged transaction ID to
refer to the correct operation. The separation of prepare from commit allows a
single client to initiate multiple transactions at multiple servers, committing all of
them only if prepare is accepted at all services. The worst loss that can happen
with this protocol occurs if the response to begin is lost. Because the transaction
ID is unknown to the client, it must start a new transaction, thus wasting a small
amount of storage at the server. Such incomplete transactions may be removed
periodically by a garbage collector.

These considerations led to a redesign of the GRAM protocol in Globus
Toolkit version 2 (GT2). As the introduction of a complete two-phase commit pro-
tocol would have involved a costly rewrite of a large portion of the protocol, this
redesign reaped most of the benefits by employing a limited form of two-phase
commit through small changes to the submission and completion elements of the
protocol. These improvements are shown in Figure 19.5.

19.2 Reliable Remote Execution
295

Commit data

Fix data

Store data

Create txn

Prepare

Data

Ack

Ack

Commit

Store ID

ID

Begin

Client Server

19.4

FIGURE

A standard two-phase commit protocol between a generic client and server. The
first phase consists of a begin message to create a transaction, one or more data
messages to provide the transaction details, and a prepare message to fix the
transaction in persistent storage. The second phase is consummated with a com-
mit message. Condor-G uses a variation of this protocol shown in Figure 19.5.

Chapter 19 25/8/03 12:23 PM Page 295

To submit a job, the gridmanager issues a submit message as before.
However, this message is interpreted as a combination of begin, data, and pre-
pare. It requests a new transaction, specifies all of the job details, and forces the
data into persistent storage. The jobmanager then responds with a unique job ID.
To complete the transaction, the gridmanager issues a commit message that is
acknowledged by the jobmanager. A similar convention is used in reverse when
the job is complete. The jobmanager sends a complete message to the gridman-
ager, informing it that the job has completed. The gridmanager responds with
another commit message, indicating that it is safe to delete the entire transaction,
and the jobmanager acknowledges.

This protocol provides coherence in the event of failures. After the initial sub-
mit message, either party or the network may fail, but the protocol may resume
by referring to the existing transaction ID. The greatest loss could occur if the
submit message is successful but its reply is lost. However, this amount of data is
relatively small. Large binary objects such as the executable and input files are
transferred asynchronously by the job manager only after the submission has
been committed.

Another challenge in the early GRAM design lay in the fact that the jobman-
ager stored locally persistent state and dealt with two other persistent services: the
gridmanager and the batch queue. Yet the jobmanager itself is not persistent. If the
entire system should lose power and reset, then the gridmanager and batch queue

19 Building Reliable Clients and Services
296

Job complete

Delete job

Store job

Start job

Complete

Store done

Store ID

Job ID

Ack

Ack

Commit

Commit

Submit

Gridmanager Jobmanager

19.5

FIGURE

The improved GRAM protocol, which uses a limited form of the two-phase com-
mit protocol given in Figure 19.4. In the first phase, the gridmanager submits the
job details to the jobmanager. In the second phase, the gridmanager issues a
commit to complete the transaction. A similar technique is used to indicate job
completion.

Chapter 19 25/8/03 12:23 PM Page 296

would recover and resume, but there would be no jobmanager to oversee the run-
ning job. This is a common and dangerous situation: the schedd is aware that the
job is in a remote batch queue, but without the jobmanager, it cannot control it.

To remedy this situation, GRAM in GT2 and later Globus Toolkit releases is
equipped with a restart capability. If the schedd loses its connection with the job-
manager, it restarts another one by contacting the gatekeeper and requesting
another jobmanager of the same type. It then asks the newly minted jobmanager
to recover the persistent state of job in question and to continue monitoring the
running job. Thus, so long as the schedd itself recovers, it can assume responsi-
bility for starting the jobmanager.

It should be noted that this new form of resilience places an important
obligation on the jobmanager. Because the schedd creates a new jobmanager
whenever needed, any jobmanager has the obligation to destroy itself whenever
contact with the schedd is lost: otherwise, it would be possible for two jobman-
agers to oversee the same job. In the same way that the shadow and starter are
obliged to be brittle in traditional Condor, the jobmanager is also obliged to be
brittle because another process—the schedd—is responsible for its resilience.

This discussion emphasizes the point that resilience introduces complexity.
The brittle properties of the traditional Condor system make failure recovery sim-
ple. However, the resilient nature of every process in Condor-G makes failure
recovery much more complicated. The standard techniques established by highly
consistent systems such as distributed databases must not be overlooked when
designing computational Grids.

19.2.3 Gliding-In

Both traditional Condor and Condor-G have distinct advantages and disadvan-
tages. Traditional Condor allows for powerful selection and description of
resources and provides specialized environments for checkpointing, remote I/O,
and the use of runtime systems such as PVM, MPI, and Java. Condor-G allows a
user to reliably harness any remote computation system, even if it is not a Condor
pool. The two approaches may be combined to leverage the advantages of both via
a strategy called gliding-in that builds a traditional Condor pool on top of a Condor-
G system.

The glide-in technique is shown in Figure 19.6. First, the Condor software is
packaged into a “glide-in job” that is given to Condor-G. Next, the user estimates
approximately how many machines they wish to use, and submits that many
glide-in jobs. Once running under the remote batch queue, these processes form
an ad hoc Condor pool with an existing public matchmaker or perhaps a private

19.2 Reliable Remote Execution
297

Chapter 19 25/8/03 12:23 PM Page 297

matchmaker established by the user. Of course, the size of the pool depends on
how many glide-in jobs propagate through the remote queue and actually begin
running: the user only exercises indirect control through the number of glide-in
jobs submitted. Once the ad hoc pool is formed, the same user may then submit
jobs of actual work to be done. These jobs perform matchmaking and execute on
the glided-in resources just as in traditional Condor.

19 Building Reliable Clients and Services
298

1a: Submit glideins

1b: Submit jobs

6: Run job7: Online I/O

3: Notify

2: Advertise
requirements

2: Advertise
requirements

End
user

4: Verify
reqs

5: Transfer job details

Startd

Starter

User’s
job

Jobmgr Remote batch queue

Gate
keeper

Match
maker

Gridmgr

Shadow

Home
disk

Temp
disk

Schedd

19.6

FIGURE

Gliding in Condor via Condor-G. (1a) A user submits a glide-in job to a Condor-G
schedd. They are transferred to a remote batch queue as described in Figure 19.2.
(1b) A user submits a normal job to the same schedd. (2–7) Jobs execute on the
glided-in Condor system as in Figure 19.1.

Chapter 19 25/8/03 12:23 PM Page 298

The glided-in Condor processes make the remote batch queue a more friendly
execution environment by providing the specialized Condor tools and language
environments. They also allow the user to perform resource management with-
out involving the host batch system; jobs may be preempted, migrated, or
replaced at the user’s whim without involving the underlying system. The glided-
in Condor pool also offers the user some insurance against runaway consumption.
If some oversight in the protocol between the gridmanager and jobmanager
should accidentally leave a job running in the remote batch queue, it will appear
in the roster of the ad hoc Condor pool where the user can either harness it or
deliberately remove it. If the glide-in jobs themselves are left behind and unused,
they will automatically terminate themselves after sitting idle for a user-defined
length of time. Thus, the user need not worry about misplaced jobs.

19.3 WORK MANAGEMENT

So far, we have described a user’s needs as simply a job: a single process to be
executed on one machine. (Of course, a single job might be many tasks destined
to run on a multiprocessor. However, such a job and machine would each be rep-
resented as one entity within a Grid.) However, most users come to the Grid to
accomplish a large amount of work, frequently broken into small independent
tasks. They may be performing parameter sweeps, rendering digital video, or sim-
ulating a complex system. The performance of such workloads is not measured in
traditional microscopic computing metrics such as floating-point operations per
second, but rather in end-to-end productive terms such as permutations examined
per week, video frames rendered per month, or simulations completed per year:
what is known as high-throughput computing (539) (see also Chapter I:13).

Users need higher-level software to manage such large-scale activities. Systems
such as Condor and Condor-G manage work that is ready to be performed. Users
also need to track work that is yet to be done, has already completed, or perhaps
needs to be repeated. In addition, they need structures that control the order,
priority, and assignment of work to Grid resources. The Condor Project and its col-
laborators are investigating a number of these structures, which may be divided
into two categories: job-parallel and task-parallel.

A job-parallel system considers a body of jobs to be done, chooses the next
jobs to execute, and then looks for resources on which to execute them. Job-
parallel systems are well suited to workloads where each job requires distinct
resources. The primary tool for job-parallel computing in the Condor Project is
the directed acyclic graph manager, or DAGMan for short. DAGMan is used in

19.3 Work Management
299

Chapter 19 25/8/03 12:23 PM Page 299

several settings, including the Condor and Condor-G systems described previ-
ously. With slight variations, it is used in two other Grid systems that we describe
below.

A task-parallel system performs a similar task in the opposite order. It consid-
ers the (potentially changing) resources it has currently available, and then
assigns a task from a work list to a suitable resource. Task-parallel systems are
well suited to workloads in which tasks are small and have similar requirements.
We describe a task-parallel framework known as master–worker that has been
used in several production settings, most notably to solve a significant optimiza-
tion problem. A similar task-parallel model is used by the XtremWeb system,
which works in concert with Condor.

19.3.1 Job-Parallel Computing

Figure 19.7 shows a directed acyclic graph, or DAG for short. A DAG consists of sev-
eral nodes, each representing a complete job suitable for submitting to an execu-
tion system such as Condor or Condor-G. The nodes are connected by directed
edges, indicating a dependency in the graph. For example, in Figure 19.7, job A
must run to completion before either job B or C may start. After A completes, jobs
B and C may run in any order, perhaps simultaneously.

DAGMan is the Condor process responsible for executing a dag. DAGMan
may be thought of as a distributed, fault-tolerant version of the standard UNIX

19 Building Reliable Clients and Services
300

A

C B

E D

JOB A a.job
JOB B b.job
JOB C c.job
JOB D d.job
JOB E e.job
PARENT A CHILD B C
PARENT C CHILD D E

19.7

FIGURE

A directed acyclic graph of jobs or DAG.

Chapter 19 25/8/03 12:23 PM Page 300

make facility. Like make, it ensures that all components of a DAG run to com-
pletion in an acceptable order. Unlike make, it does not rely on the file system
to determine which jobs have completed. Instead it keeps a log to record where
jobs are submitted, when they begin executing, and when they complete. If
DAGMan should crash, it can replay the log to determine the progress of the
DAG.

DAGMan executes jobs by submitting them to a schedd in a Condor or
Condor-G pool. As described earlier, the schedd ensures that the jobs are persist-
ently retried, even if system components (including schedds) crash. To provide
DAGMan with the same sort of resilience, DAGMan itself is submitted to the
schedd, which considers it to be a normal Condor job in every respect, except that
it executes under the supervision of the schedd on the submitting machine. Thus,
the same transactional interface can be used to submit whole DAGs, inquire about
their status, and remove them from the queue

Each job in a DAG carries its own independent requirements on execution. In
a traditional Condor pool, one job in a DAG may require a machine with a large
amount of memory, while another may require a machine with a particular type
of CPU. In a Condor-G system, different jobs may need to run on entirely differ-
ent gatekeepers. Each job maintains its own abstract requirements that are not
evaluated until the job has been passed to the schedd for consideration by the
matchmaker. We call this property late binding. The job is not assigned an
execution site until the last possible moment. Thus, the system has maximum
flexibility in deciding how to execute the job. Other systems have explored the
possibility of binding earlier in the lifetime of a job. We discuss two such systems
here, the EU Data Grid and the Chimera system.

The planned EU Data Grid (EDG) is a Globus Toolkit-based Grid that links
computing centers and data storage centers across Europe to support the com-
puting needs of a variety of data-intensive science projects. In the planned EDG
architecture (Figure 19.8), work is expressed as an abstract DAG consisting of jobs
with requirements on the site of execution. In addition to the usual requirements
such as the necessary CPU, amount of memory, and so forth, these jobs may also
have requirements on relationships between elements. For example, one job may
need to execute on a machine with a certain dataset in local storage, while
another job may simply need to run at the same site as its predecessor in the DAG.
Armed with this information, the schedd evaluates the DAG piece by piece. For
each job, it employs the traditional model of consulting with a matchmaker to find
an appropriate match for the job. However, instead of matching with a single
machine, it matches with an entire batch queue. It then uses the Condor-G mech-
anisms for executing the job through that queue. This process continues until the
entire DAG has been evaluated and executed.

19.3 Work Management
301

Chapter 19 25/8/03 12:23 PM Page 301

The Chimera system (284, 285) is designed for the production of virtual data.
Unlike a traditional batch execution system, Chimera does not require the user to
specify what programs are to be executed. Rather, it asks the user to specify what
data are to be produced. Much like a functional programming environment,
Chimera plans what procedures are necessary to realize the data using funda-
mental inputs. Thus, the user is relieved of the burden of tracking and managing
large numbers of batch jobs, while the system can silently optimize caching, data
placement, and function shipping. The architecture of the Chimera system is
shown in Figure 19.9.

The user interacts with the Chimera system by submitting request for specific
virtual data elements. Chimera consults a virtual data catalog to determine
whether the data have already been created, and may potentially respond imme-
diately with the result if it is available. Otherwise, Chimera produces a DAG
designed to compute the necessary data. This DAG is executed via the use of
many of the Condor-G components described previously.

The Chimera architecture admits to a variety of scheduling strategies, from
early to late binding. The Pegasus planner (216) performs early binding, using

19 Building Reliable Clients and Services
302

1: Submit

3,6: Notify2,5: Advertise

4: Submit

7: Submit

Abstract dag

Match
maker

Gate
keeper Remote batch queue

Gate
keeper Remote batch queue

Gate
keeper Remote batch queue

Schedd

A

C B A

B

D E

19.8

FIGURE

The planned architecture for executing dags in the European Data Grid. (1) The
user submits a DAG composed of jobs with abstract requirements. (2) The schedd
advertises the requirements of the first job. (3) The matchmaker notifies the
schedd of a compatible gatekeeper. (4) The schedd executes the first job via
Condor-G as in Figure 19.2. (5) The schedd advertises the second job. (6) The
matchmaker notifies the schedd. (7) The schedd executes the second job. This
pattern continues until the DAG is complete.

Chapter 19 25/8/03 12:23 PM Page 302

various planning techniques to produce a concrete DAG composed of jobs whose
location is already specified in the form of a GRAM gatekeeper name. The whole
DAG is passed to a schedd, which then executes each component via Condor-G as
in Figure 19.2. Other approaches (544) that perform late binding via call-outs from
the Condor-G agent to simple decision makers are being explored.

All of these examples use DAGMan to manage job-parallel workloads, but
they differ in how and when abstract names are assigned to physical resources.
The traditional Condor approach of late binding defers this decision until the last
possible moment. If the job should fail, an entirely new name binding may be
attempted and the job sent elsewhere. In the EDG medium binding approach, the
user still specifies abstract requirements on when and where each component
must be executed, but the schedd makes a single decision regarding which batch
queue to use. Once made, the final assignment of compute resource is left to the
local batch scheduler. Finally, in the Chimera–Pegasus early binding approach
the user is to specify an abstract target of the work, but the planner decides on the
entire set of physical resources to use before the work is even submitted to
Condor-G. The schedd simply passes the jobs to the named resources.

19.3 Work Management
303

3: Submit

1: Submit

2: Plan

4: Submit

5: Submit

Physical dag

Abstract job

Gate
keeper Remote batch queue

Gate
keeper Remote batch queue

Gate
keeper Remote batch queue

Schedd

Planner

A

C B

X

A

B

X E

19.9

FIGURE

The architecture of the Globus Chimera virtual data system. (1) The user submits
an abstract job that describes a data object to be realized. (2) The planner creates
a DAG that will realize the data. Each job in the DAG is bound to a physical loca-
tion. (3) The DAG is submitted to a schedd. (4) Each job in the DAG is executed
via Condor-G as in Figure 19.2.

Chapter 19 25/8/03 12:23 PM Page 303

None of these approaches is universally better than the others. Early name
binding is needed when the information needed to make a good placement
decision is not integral to the remote execution system. This is appropriate in
Chimera because the planner has information about storage resources that is not
available to Condor. Late name binding is better when such information is
available, because the system is able to make alternate choices when failures and
other exigencies thwart the original plan. An example of this is found in the
notion of I/O communities (637) that integrate the state of storage into an existing
matchmaking system. Medium name binding is a compromise that works
when storage resources are accessible to the matchmaker, but not to the target
execution system.

19.3.2 Task-Parallel Computing

The task-parallel model works by first harnessing the necessary workers and
then assigning work units as workers are available to process them. This com-
puting model is naturally suited to large problems of indeterminate size that
may be easily partitioned. We discuss two task-parallel computing systems:
Condor master–worker (Condor-MW) and XtremWeb (XW); see also Chapters 28
and 29.

In the Condor-MW and XW systems (Figure 19.10), as in other similar systems
such as Entropia (180), SETI@home (79), and Nimrod (56), one master process
directs the computation with the assistance of as many remote worker processes
as it needs or the computing environment can provide. The master itself contains
three components: a work list, a tracking module, and a steering module. The

19 Building Reliable Clients and Services
304

Worker processesMaster process

Tracking

S
te

er
in

g

W
or

k
lis

t

W

W

W

W

W

W

19.10

FIGURE

The master–worker framework.

Chapter 19 25/8/03 12:23 PM Page 304

work list simply records all outstanding work. The tracking module accounts for the
remote worker processes and the remaining work to be done and assigns workers
uncompleted work. The steering module directs the computation by assigning
work, examining results, and modifying the work list.

Task-parallel computing is naturally fault-tolerant. Workers are assumed to be
unreliable: they disappear when machines crash and they reappear as new
machines become available. If a worker should fail while holding a work unit, the
steering module simply returns it to the work list. The steering module may even
take additional steps to replicate or reassign work for greater reliability or simply to
speed the completion of the last remaining work units near the end of a problem.

Workers themselves must be managed. New workers must be sought out
when needed, failed workers must be noted and replaced, and idle workers must
be released when no longer needed. These functions can be performed within the
system itself or by the user. We explore both possibilities.

The Condor-MW (443) system is a set of C�� classes that encapsulate com-
munication and management facilities needed for task-parallel computing. The
programmer extends these classes to construct an application-specific master and
worker. The management of workers may be tightly integrated with the work
itself. For example, as a computation progresses, the master may want to scale the
number of workers with the size of the work list. This capability is supported by
the function set_target_num_workers, which the application writer can call at any
point in a program (534) to request that the master attempt to adjust the number
of workers, using the underlying Condor schedd to request new resources or
release old ones. Of course, the number of workers is a goal, not an assertion. The
number of workers may be less than the target if there are no more available
machines, and may be higher if the master slowly releases workers as they finish
their current tasks.

Communication between master and workers is achieved via TCP connec-
tions, thus allowing the master to know when a stream has broken, indicating that
a worker has disconnected or failed. A distributed file system may also be used as
the communication channel, in which case messages between master and workers
are placed in a rendezvous directory that serves as a persistent message queue.
This approach allows MW to tolerate network outages, relying on the underlying
file system for reliable delivery. In this model, timeouts must be used to detect the
failure of a worker process. A third option is to use PVM communications.

The master dispatches work units to workers and thus maintains tight control
over the disposition of each worker. It knows exactly which are busy and which
are idle, and can even deliberately hold workers idle in the expectation of future
work or as an instantaneous reserve against failures. (In Condor, a client is
“charged” for machines that it claims, whether it uses them or not. Typically, the

19.3 Work Management
305

Chapter 19 25/8/03 12:23 PM Page 305

charge is only accumulated as a convenience figure to measure pool use and
control priority, but it could also be turned into a pecuniary debt.) Because the
master controls the workers closely, it may distinguish between failed and idle
workers and seek out new resources as needed.

The XW (257) system is a Java-based system for task-parallel computing. Like
Condor-MW, it encapsulates many of the communication and organizational
details for task-parallel computing, allowing the programmer to concentrate on
application details. XW differs from Condor-MW in several key ways. It is
designed to operate over a wide-area network, assuming no underlying remote
execution system. Thus, workers operate autonomously, pulling work units from
the master. It does not manage the allocation of the workers themselves, but it
does provide for security and for operation through network disconnections.

An XW worker manages a machine in a manner similar to a Condor startd. It
only permits remote processes to run within the constraints of the machine’s
owner. For example, it may permit remote users to harness the machine at night
or when the console is idle. When available to perform work, the worker contacts
a well-known master to obtain a work unit. It is then free to operate while
disconnected and may choose to pause or discard work at its discretion. When dis-
connected, a worker is responsible for sending periodic messages to the master to
indicate that it is still alive.

The pull nature of the XW worker is well suited to the realities of the current
Internet. Firewalls, address translators, and similar devices often prevent
symmetric network connectivity. However, many such barriers permit a TCP
connection to be initiated from the private portion to the public network, thus
encouraging a design in which the master is placed on a public network and pas-
sively accepts incoming connections from workers, which are more numerous
and likely to execute on private networks.

XW provides security mechanisms to protect the integrity of the application
and the machine owners. For portability, the worker itself is bootstrapped in a Java
virtual machine, but end-user computations may be performed in native code. To
protect the owners of worker machines, only native code certified by a central
authority is accepted for use. A public-key encryption system is used to ensure
code authenticity and to protect communications between the master and workers.

Because the XW master manages only work and not the workers themselves,
an application has no direct control over the number of workers that it harnesses.
However, this task can be performed outside the context of the system. For exam-
ple, an XW system may be integrated with a Condor pool or Condor-G system by
starting an XW master and submitting a number of XW workers to a schedd. As
Condor is able to execute the XW workers, they report to the known master,
distribute the application code, and go to work.

19 Building Reliable Clients and Services
306

Chapter 19 25/8/03 12:23 PM Page 306

XW is planned to be used as a distributed resource manager for the Pierre
Auger Observatory. This international scientific group aims to study high-energy
cosmic rays indirectly by way of their interaction with the Earth’s atmosphere. To
properly calibrate the detector, its behavior to a large number of incident rays
must be simulated. Approximately 10 CPU-years (570) of simulation must be per-
formed. To complement the existing standard computing clusters, XW will be
used to distribute the FORTRAN simulation code to opportunistic workers.

19.4 THE LAYERS OF GRID COMPUTING

The preceding discussion shows how a complex Grid computing system can be
built up in layers, with each layer assuming the responsibility to multiplex
resources for a different reason. Figure 19.11 shows these responsibilities.
Together, the Condor-G gridmanager and jobmanager form an inter-Grid system.
They are responsible for bridging the gap between autonomous systems on the
Grid and are concerned with matters of security and disconnected operation.
They have limited facilities for managing different classes of machines and jobs.
These problems are better solved by the Condor schedd and startd, which form an
intercustomer system. Once connected via the inter-Grid system, they manage all
the details of heterogeneous systems and arbitrate requests for service from dif-
ferent customers. However, they do not provide services for managing the order
and assignment of work to be done, tasks that are better handled by an intertask
system such as DAGMan, Condor-MW, or XW.

The most flexible layers of a Grid system are task-parallel. The unique
feature of a task-parallel system is that it provides separate interfaces for the
allocation of resources and the assignment of work. For example, in both
Condor-MW and XW, the user may manipulate the number of workers available,

19.4 The Layers of Grid Computing
307

19.11

FIGURE

The layers of Grid computing.

Chapter 19 25/8/03 12:23 PM Page 307

by either calling a procedure (Condor-MW) or invoking new workers externally
(XW.) This distinction leads to a powerful and robust system design, because the
concerns of performance are separated from those of correctness. If higher
throughput is needed, more workers may be added. If shorter latencies are
needed, nearby or faster workers may be added. The master’s work-assignment
algorithm is oblivious to what resources are selected, and persists through all
failures.

The same distinction between allocation and assignment is found in other
layers as well. The traditional Condor intercustomer system is task-parallel at
heart. The schedd allocates machines using the matchmaking algorithm and
then only assigns work in the order of local priority as machines become avail-
able. Like a Condor-MW or XW master, the schedd may hold allocated machines
idle as hot spares or as a cache for future requests, if it is willing to pay the
price.

When allocation and assignment are coupled, the system is less flexible. For
example, Condor-G couples machine allocation with job execution. It submits a
job to an existing remote batch queue without advance knowledge of whether the
job will execute immediately or at all. If multiple queues are available, it must
send a job to wait in one queue or the other and may find it difficult to enforce
local orderings on job execution. To remedy this problem, we may layer a task-
parallel system on top, as is done with gliding-in. The task-parallel Condor system
multiplexes the job-parallel Condor-G, allowing the user more flexibility in
resource allocation.

Thus, rather than place all of these responsibilities in one process or system,
each layer is responsible for the needs of one type of element: Grids, customers,
or tasks. Depending on the desired functionality, users can assemble an appro-
priate system by overlaying one layer on top of another.

Exactly such a layered system was built in the year 2000 to attack a series
of unsolved optimization problems (443). Using Condor-MW, four mathemati-
cians from Argonne National Laboratory, the University of Iowa, and North-
western University constructed a branch-and-bound searching algorithm. This
technique divided the initial search space into smaller regions, bounding what
could be the best possible solution in each. Despite a highly sophisticated solu-
tion algorithm, the time required to find a solution was still considerable: over
seven years with the best desktop workstation available at the time. This solver
was deployed on a layered system consisting of the master–worker framework
running on a traditional Condor pool glided in over a Condor-G system. A solu-
tion to the NUG-30 facilities assignment first posed in 1968 was found in less
than one week by using over 95,000 h of CPU time on 2,500 CPUs at 10 differ-
ent physical sites.

19 Building Reliable Clients and Services
308

Chapter 19 25/8/03 12:23 PM Page 308

19.5 RELIABLE OUTPUT

The final problem that we consider is the following. Jobs placed on remote exe-
cution sites may wish to read and write from archival storage, send messages back
and forth to other running processes, or read and write intermediate results at
known rendezvous points. These activities are known collectively as input and
output (I/O). Regardless of destination, most I/O activities are performed via
standard file-system operations such as open, read, write, and close. As with
remote execution, these operations assume a fault-free connection between the
application and the target storage device, and reliability is at best an illusion pro-
vided to the application. Within a Grid computing system, we must be prepared
to deal with all manner of failures.

We focus here on output. Input is a well-studied problem: file systems, data-
bases, and Web browsers have all addressed the difficulties of replicating read-only
data for the sake of a migrating client (254, 528). Much of that research is relevant
and already implemented for Grid computing systems. Furthermore, output has
stricter requirements for consistency. Whereas an already-read input may be dis-
carded with the knowledge that it may be re-read at a predictable cost, output data
are usually (but not always) a more expensive commodity produced by a careful
confluence of inputs with software and hardware. Indeed, some outputs (such as
those of a physical measurement) may not be reproducible at all. Finally, output
may be considered the simple dual of input. Every reader requires a writer, and
the recording of data into stable storage is more complex than its retrieval.

We assume that a running application wishes to record its output in a named
storage location. Whether this is an archival device, rendezvous storage, or another
running application is a minor detail. The simplest way to accomplish this task is to
connect the file-system operations of an application by remote procedure call to the
storage device. This is known as remote output. As we will see, this method is sen-
sitive to all of the problems of disconnection discussed previously in the context of
the remote execution scenario. We present several techniques for making remote
output robust to system failures. However, before we embark on that discussion, we
must establish several primitives for reliably recording output data in stable storage.

19.5.1 Storage Transactions

Just as execution systems require careful protocols such as two-phase commit
to provide a reliable service, so too do storage systems require disciplines for
ensuring that complete actions are secure and incomplete actions are cleaned

19.5 Reliable Output
309

Chapter 19 25/8/03 12:23 PM Page 309

up. However, unlike databases, most mass-storage devices do not support the
complete notion of a transaction as we explored earlier. Instead of begin, pre-
pare, commit, and abort, we have only fsync, which forces all previous changes
to storage. Nevertheless, we can still perform reliable storage operations if we
accept limitations on either the sort of operations performed or on the nature of
the transaction itself.

If we limit programs to performing only the storage of complete new files,
we can provide reliability through what we call a delivery transaction. This disci-
pline provides the same guarantees as the ordinary two-phase commit protocol.
Suppose that a program wishes to deliver a new file f1. To begin a delivery trans-
action, a new file f1.t must be created. The program may then write data into f1.t
in any desired order. To prepare the transaction, the write permissions on f1 are
checked, the data are fixed to permanent storage by invoking fsync on f1.t, and
the file is renamed to f1.p. Finally, to commit the transaction, the file is renamed
into f1.

This discipline satisfies the two-phase commit requirements as follows. If the
transaction is to be aborted at any time, f1.t may simply be deleted without harm.
If either the client or server should crash before the transaction is prepared, the
recovery procedure should delete all unprepared transactions by deleting any file
ending in .t. Files ending in .p have been fixed to disk and may safely be retained.
Finally, if either side should crash while a rename is in progress, the POSIX (32)
semantics of file renaming ensure that the entire file will exist under exactly one
of the names f1 or f1.p.

Delivery transactions are certainly a dominant mode of interaction in Grid
computing, but they are not the only mode. Some user’s jobs require more sophis-
ticated interactions with storage, sometimes creating and deleting multiple files.
A limited form of reliability may still be provided for these jobs without resorting
to a full-blown database system. If we limit a job to the use of certain operations
and apply the fsync operation as a form of commit, we can provide what we call
a half-transaction. A half-transaction guarantees that a series of operations, once
committed, are safely on stable storage. A half-transaction has no facility for abort-
ing incomplete work. It must be carried forward.

When using half-transactions, we must limit a job to idempotent operations.
An operation is idempotent if it may be run multiple times, perhaps not even to
completion, but if the final execution is successful, then the end effect on storage
is the same as if exactly one successful execution occurred. Most file-system oper-
ations, if correctly recorded, are idempotent.

For example, the creation of a file by name is idempotent. It may be repeated
many times and the file still exists exactly once. Writing data to a file is also
idempotent if the write offset is explicitly given. A few key operations are not

19 Building Reliable Clients and Services
310

Chapter 19 25/8/03 12:23 PM Page 310

idempotent. For example, appending to an existing file is not idempotent if the
current file size is the implicit write point. Renaming a file from one name to
another is also not idempotent. These operations must be avoided when using
half-transactions.

Half-transactions are used as follows. A stream of idempotent output opera-
tions may be written to storage. To complete the half-transaction, a commit must
be issued. A standard file system provides commit by allowing a client to invoke
fsync on all files that have been modified. If the client receives an acknowledge-
ment for the commit, then the half-transaction is complete. If the connection
between the client and server is lost, then the entire half-transaction must start
again. However, it does not matter if any or all of the write operations have suc-
ceeded or failed, because the idempotent property guarantees that the end result
will be the same. When the likelihood of failure is high, a single half-transaction
may be strengthened by adding periodic commit operations before the final
commit. If a failure occurs, the half-transaction need only be resumed from the
operation following the most recent commit.

19.5.2 Reliable Delivery Techniques

Whether we are performing delivery transactions for whole files or half-transactions
for arbitrary updates, Grid computing requires reliable services for delivering the
inputs and outputs. However, it is difficult to divorce the completion of output from
job execution. The manipulation of storage is an important side effect of execution,
and we would negligent indeed if a job completed reliably without performing its
output (or vice versa). Thus we must pay special attention to the integration of
job completion with output completion. Where the word commit appears, it may
be used to indicate the completion of either a storage or half-transaction, whichever
is in use.

The most natural form of output is direct output (Figure 19.12). In this model,
a job stays in close contact with its target storage. When it requires input or out-
put, it issues a remote procedure call to the target storage to access some limited
portion of the data that it needs immediately, perhaps with some ability to cache
and buffer expected data. This approach is used in the Condor remote system call
facility (602), in which every system call executed by a job is sent home for
execution at the shadow. Similar techniques are found in distributed file systems
such as NFS (572) and AFS (370).

No matter what type of storage transaction the job employs, it is responsible
for seeing that any modifications run to completion. Thus, the job itself is res-
ponsible for issuing a final commit to the target storage before indicating a

19.5 Reliable Output
311

Chapter 19 25/8/03 12:23 PM Page 311

successful exit to the process that supervises it. In traditional Condor, the roles
of storage device and supervisor are both played by the shadow process, but
the same principle applies to other systems. If the commit does not succeed,
the job is responsible for aborting itself rather than indicating a successful
completion.

The direct output technique is easily constructed and well understood.
However, it has one major drawback. It holds the job hostage to the whims of the
larger system. If the storage device crashes, the network fails, or a temporary load
diminishes bandwidth, the job will pause as it waits for the remote procedure call
to finish. This is the case regardless of whether the output is performed over a
stream connection, as in Condor, or over datagrams, as in NFS. On the other hand,
the output might complete, but the job might fail or be evicted before it can record
a successful completion.

One technique for insulating the job from these problems is to perform all I/O
in large pieces before and after the job executes. This strategy is used, for exam-
ple, in the Globus Toolkit GASS system (117). It does provide limited insulation,
but also creates new problems. A job’s I/O must be known before it runs, which
is not always possible. Also, the user cannot see progressive output, as may be
required to determine whether a computation is running correctly. Some jobs
may permit limited interactive steering when run in a batch mode, so interactive
access may allow more efficient use of resources.

What many jobs and users require is an “interactive when possible” I/O
capability that makes a job’s inputs and outputs immediately available when
network conditions permit. Otherwise, output is buffered and performed in the

19 Building Reliable Clients and Services
312

1: Commit

2: Commit 3: Ack

4: Ack

5: Exit

User’s
job

Home
disk

Shadow

19.12

FIGURE

Direct output via remote system calls. When the job is ready to exit, it issues
commit to the shadow. The shadow forces all output to the disk, and sends
an acknowledgement back to the job. Now satisfied, the job informs the shadow
that it is complete.

Chapter 19 25/8/03 12:23 PM Page 312

background so as not to unnecessarily delay execution. The Grid Console
provides this capability. It is composed of two parts, an agent and a server
(Figure 19.13). The agent attaches itself to the job’s standard input and output
streams using the Bypass (638, 639) interpositioning tool. As the job runs, it
traps I/O operations and, if the network is available, passes them to the shadow
via remote procedure calls. If the network is not available, output data are sim-
ply written to local temporary storage. When the network becomes available
again, the agent writes the buffered outputs to the shadow and resumes normal
operations. Input data are read on demand from the server. If the network is
not available when an input is needed, the job is blocked. When the job wishes
to exit, the agent ensures that all buffered data are written and committed, and
then permits the job to exit.

The Grid Console is an improvement over direct output, as it permits the job
to operate even when disconnected from the shadow. This technique is similar to
the form of disconnected operation found in file systems such as Coda (413),
which permit a client to optimistically operate when disconnected from the home
file system. However, when the job exits, it may still be blocked if the network is
down: a necessary consequence of the small but vital coupling between the job’s
exit code and its output side effects.

19.5 Reliable Output
313

2: Write + commit

3: Write
+ commit

6: Ack

5: Ack

4: Ack

7: Job complete

1: Exit

User’s
job

Home
disk

Temp
disk

Shadow

Grid
console
agent

Grid
console
server

19.13

FIGURE

The Grid Console permits more flexible I/O coupling. As the job runs, it writes
output data to the agent, which stores it on the temporary disk or forwards it to
the server. When the job wishes to exit, it informs the agent, which must then
force all output to the server. If successful, the job is informed and may indicate
completion to the shadow.

Chapter 19 25/8/03 12:23 PM Page 313

We may stretch this coupling even further by using the Kangaroo (636) I/O
system, shown in Figure 19.14. A Kangaroo system is a peer-to-peer network of
identical servers, each providing temporary storage space for visiting jobs. A job
may queue output requests as messages at any Kangaroo server, addressing them
with the name of the user’s home storage. Like Internet mail, these requests pro-
ceed to their destination asynchronously, perhaps passing through several servers
along the way. Unlike Internet mail, Kangaroo provides two distinct consistency
operations. When a job writes data to a nearby server, it uses a commit message
to make sure that the data are safe on local storage. Thus, the job may exit with
confidence that the data will arrive eventually, although it does not make any
guarantees about exactly when it will arrive. The job informs the shadow that it
has exited and evacuates the machine, making it available for another job to use.
The shadow, knowing the output may still be spooled at the remote Kangaroo
server, must use the second consistency operation, push, to ensure that all dirty
data are forced back to the home storage site before informing the user that the
job has completed.

These three variations on reliable output share many properties with remote
execution. The simplest systems involve tight coupling between the submission

19 Building Reliable Clients and Services
314

7: Write + commit

6: Write
+ commit

6: Push

11: Ack 1: Commit

10: Ack

9: Ack
2: Write

+ commit
3: Ack

5: Job complete

4: Ack

User’s
job

Home
disk

Temp
disk

Shadow

Kang
server

Kang
server

19.14

FIGURE

Kangaroo permits even more flexible coupling. The job writes its output data to
the nearest Kangaroo server as it runs. When it wishes to exit, it issues a commit
to the nearest server. If successful, it indicates completion to the shadow. The
shadow must then issue a push in order to ensure that all output have success-
fully been delivered.

Chapter 19 25/8/03 12:23 PM Page 314

and execution sites. A more relaxed coupling has advantages, but it demands
more complex interactions between client and server.

19.6 FUTURE DIRECTIONS

We have introduced techniques that a client of distributed services can use to deal
with disconnections and failures and to ensure that remote services reach an
acceptable state. (Just as database system imposes order on unstructured disk
drives, so too must Grid clients impose order on unstructured workers.) We
conclude by reflecting on the properties of an ideal remote Grid service, one that
would be a reliable and effective partner for a Grid client. Although remote serv-
ices need not be perfect (good clients are prepared to deal with failures), better
services can enable more effective and efficient Grid clients.

An ideal remote execution service would have:

1. Powerful ways to asynchronously interact with third parties, such as data-
bases or file systems, on behalf of a job.

2. Precise tools for measuring and limiting what resources a job consumes.

3. Reliable methods for cleaning up an unmanaged machine before and after
each job executes.

4. Clear responsibility for dealing with failures and unexpected events without
continuous oversight from the submitter.

We call this imagined reliable partner the Grid Shell. A Grid Shell surrounds a
job, insulating it from a hostile environment. Some of this insulation occurs by
preparing the execution site appropriately, perhaps by transferring files or
installing other software before the job runs. Some might also occur by emulating
the necessary services at run-time. Whatever the tools available to the Grid Shell
for dealing with the complexity of the outside world, it must rely entirely upon an
external policy manager (such as a shadow or a gridmanager) to control how and
where it uses remote resources.

A Grid Shell does not exist now, although there already exist many pieces of
software that provide some of the needed capabilities. Like a traditional com-
mand-line shell, it does not perform any of the user’s work directly, but is an
overseer or caretaker responsible for watching a user’s job throughout its life-
time. It must locate an executable from a number of choices, given a particular
user’s preferences and settings. It must set up physical input and output objects

19.6 Future Directions
315

Chapter 19 25/8/03 12:23 PM Page 315

and bind them to logical names such as standard input and output streams. It
must create the job process and then monitor its completion, detecting whether
the job has completed normally or was simply unable to execute in the current
environment.

Although a Grid Shell would generally not be an interactive tool, it must
follow user commands and policies. As a user will not typically be physically
involved in every decision made, the Grid Shell acts as the agent or representa-
tive of the user and controls resource consumption decisions made for the user.
In the Condor, this role is filled by the shadow. Although other components
perform all of the complicated roles necessary to carry out distributed computing,
the shadow alone is responsible for simply directing what is to be used. The Grid
Shell must respect this distinction.

For example, the Globus jobmanager satisfies the first requirement for a Grid
Shell. It transfers all necessary standard input and output streams before and after
a job executes. However, it does not decide where these streams come from on its
own. It is informed of this information by the gridmanager, which fulfils the role
of the shadow in a Condor-G system. The jobmanager is also an excellent tool for
disconnected operation, as it is capable of moving these streams asynchronously
and resuming after a failure.

The second requirement is satisfied by the traditional Condor starter. As a job
runs, that starter continuously monitors all of its resource use, including CPU
time, memory size, and file-system activity. If the job exceeds any limits set by
the user, then the starter can cleanly terminate the job. This capability can be
used to prevent runaway consumption due to software or hardware failures, or it
may simply limit the user’s consumption to what is mandated by the community
as his or her fair share.

A traditional Condor startd meets the third requirement. When a
disconnection or other failure prevents a job from running properly, a Grid
Shell must be careful to precisely clean up the execution site in a manner
expected by the submitter. This frees the submitter to attempt the job else-
where without fear of creating conflicts between multiple running jobs and
without unnecessary consumption of resources. Of course, a Grid Shell need
not be aggressive about cleanup. If the submitter and the shell agree, an appro-
priate time interval may pass or other conditions may be met before cleanup
occurs. As long as the two parties agree on the conditions, a reliable system will
result.

The final requirement states that the shell must have some independent facil-
ity for retrying failures without oversight from the submitter. We have explored
this facility with an experimental piece of software known as the fault-tolerant
shell. This is a simple scripting language that ties together existing programs using

19 Building Reliable Clients and Services
316

Chapter 19 25/8/03 12:23 PM Page 316

an exception-like syntax for allowing the failure and retry of programs. For
example, this script attempts a file copy followed by a simulation for up to five
attempts at one hour each. If either should fail, the pair is tried again until a time
limit of three hours is reached:

try for 3 hours
try 5 times
copy-data ftp://ftp.cs.wisc.edu/data data

end
try for 1 hour
run-simulation data
end

end

We imagine the Grid Shell as an ideal partner for remote execution in a Grid
computing environment. Many of the properties of the Grid Shell have been
explored in existing software, but work remains to tie these disparate systems
together into a coherent whole. If carefully engineered with public interfaces,
such a tool would be useful to all manner of remote execution systems, regardless
of the vendor of the client or server.

19.7 SUMMARY

Grid computing is a partnership between clients and servers. Grid clients have
more responsibilities than traditional clients, , and must be equipped with power-
ful mechanisms for dealing with and recovering from failures, whether they occur
in the context of remote execution, work management, or data output. When
clients are powerful, servers must accommodate them by using careful protocols.
We have described some of the algorithms that may be used to help clients and
servers come to agreement in a failure-prone system. Finally, we have sketched
the properties of an ideal service for remote execution called the Grid Shell.

Many challenges remain in the design and implementation of Grid comput-
ing systems. Although today’s Grids are accessible to technologists and other
determined users willing to suffer through experimental and incomplete systems,
many obstacles must be overcome before large-scale systems are usable without
special knowledge. Grids intended for ordinary competent users must be designed
with as much attention paid to the consequences of failures as the potential
benefits of success.

Summary
317

Chapter 19 25/8/03 12:23 PM Page 317

ACKNOWLEDGMENTS

This work was supported in part by Department of Energy awards DE-FG02-
01ER25443, DE-FC02-01ER25464, DE-FC02-01ER25450, and DE-FC02-01ER25458;
European Commission award 18/GL/04/2002; IBM Corporation awards
MHVU5622 and POS996BK874B; and National Science Foundation awards 795ET-
21076A, 795PACS1077A, 795NAS1115A, 795PACS1123A, and 02-229 through the
University of Illinois, NSF awards UF00111 and UF01075 through the University
of Florida, and NSF award 8202-53659 through Johns Hopkins University. Thain
is supported by a Lawrence Landweber NCR fellowship and the Wisconsin Alumni
Research Foundation.

FURTHER READING

✦ Chapter I:14 and a series of technical articles describe early Condor develop-
ment (444, 446, 489), checkpointing (602), and remote system calls (445).

✦ Other articles describe the matchmaking model and ClassAd language (538,
539, 541), as well as extensions to the ClassAd language (447, 637).

✦ Transactions and reliability in databases and other distributed systems are
described in standard texts (327, 537); technical articles describe earlier devel-
opments (324, 326).

19 Building Reliable Clients and Services
318

Chapter 19 25/8/03 12:23 PM Page 318

