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Abstract.
A number of recent enhancements to the Condor batch system have been stimulated by the

challenges of LHC computing. The result is a more robust, scalable, and flexible computing
platform. One product of this effort is the Condor Job Router, which serves as a high-throughput
scheduler for feeding multiple (e.g. grid) queues from a single input job queue. We describe
its principles and how it has been used at large scale in CMS production on the Open Science
Grid. Improved scalability of Condor is another welcome advance. We describe the scaling
characteristics of the Condor batch system under large workloads and when integrating large
pools of resources; we then detail how LHC physicists have directly profited under the expanded
scaling regime.

1. Condor Job Router
the Condor Job Router was created to serve the following specific use-case: a user with a large
number of compute jobs wishes to run the jobs on a combination of grid and non-grid resources.
By “non-grid” we mean vanilla universe condor jobs that use matchmaking and possibly Condor
flocking to run on computers in one or more Condor pools. By “grid” we mean sites that will
accept jobs from the user through any of the remote job submission protocols supported by
Condor-G (e.g. Globus). By “Condor” we mean version 7.2.0 and beyond, with source and
binaries (including Job Router) available for download from www.condorproject.org.

The user faces a trivial but annoying scheduling problem in this scenario. Jobs must be
partitioned into those destined for the grid and those destined for the non-grid resources, because
these are two distinct and immutable classes (universes in condor terminology). The user doesn’t
know in advance how quickly jobs in these two classes will complete, because resource availability,
prioritization policy, and performance are all dynamic and difficult to predict.

The Job Router provides a mechanism for dynamically transforming jobs from one Condor
universe into another. It addresses the load balancing problem using a simple strategy: the
number of transformed jobs “in flight” may be limited. Therefore, the user may submit, say
10 thousand vanilla universe jobs and Job Router can just keep 500 at a time transformed into
grid universe jobs. As these finish, it transforms more to replace them, until there are no more
jobs left to transform, because they have all finished as either vanilla jobs or as transformed grid
jobs.
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In addition to or instead of having a fixed total limit, the number of idle (waiting to run) jobs
can be limited. In this case, the Job Router transforms jobs until it reaches the idle job limit.
Then it waits for some of the idle jobs to start running before it transforms more jobs. In this way,
it can adapt to fluctuations in the availability of grid resources using direct evidence (idleness
of a small number of jobs) rather than having to face the complex task of evaluating remote
queue prioritization policies and resource usage in order to estimate availability of resources for
making scheduling decisions.

Since the grid resources available to a user may actually be split between multiple distinct grid
sites, this presents an additional load balancing problem. Condor-G site-level matchmaking has
been successfully used to address this[1]. However, if one is already using Job Router to handle
the scheduling task of vanilla to grid universe transformation, it is a simple extension to also
handle the task of targeting several destinations. Instead of specifying a single transformation
(vanilla-to-grid), one can specify multiple transformations (vanilla-to-site1, vanilla-to-site2, ...).
Each of these transformations is called a route. The Job Router then chooses one of the available
routes using fast round-robin scheduling, subject to the individual constraints of each route, such
as maximum number of routed jobs, maximum idle routed jobs, and so on.

In the general case, arbitrary attributes of the job description can be changed by the
transformation rules associated with a route in the Job Router’s configurable policy. Special
support is provided for inserting an X509 proxy into the job if this is desired. In addition, call-
out hooks have been added (not by the authors but by Red Hat collaborators) so that external
actions may be taken at key points in the routed job’s life. Red Hat uses this for stuffing jobs into
virtual machines and routing them to Amazon’s EC2 service, a more complicated transformation
than is possible by simply modifying the job description.

Routes may also have requirements for which types of jobs they are willing to accept, so
not all paths are available to all jobs. The most basic application of this is to prevent jobs
from being routed if they are incompatible in some way. For example, a job which relies on
a shared filesystem that is not accessible from remote grid sites should not be routed to those
sites. Since dependencies such as this are not always explicitly visible in the job description, the
safest strategy is to require that jobs opt-in by declaring in the job description that they want
to be routed.

1.1. The Routing Table
The routing policy of the Job Router is specified as a list of ClassAds. Each ClassAd specifies
one route, and the attributes of the ClassAd specify the requirements of that route and how
jobs are to be transformed by it.

The routing table may either be hand-coded or it may be generated by a plug-in that polls
some external information source such as the OSG Resource Selection Service. The details are
best left for the manual, but a simple routing table depicted in Table 1 gives the flavor of how
it works.

1.2. Performance and Scalability of Job Router
The memory requirements of Job Router scale linearly with the number of jobs in the job queue,
because, like the schedd, the Job Router keeps a copy of the full job queue in memory. The
Job Router requires in the range of 150MB to 1GB for 100,000 jobs, depending on the size of
the job descriptions and the use of job clusters. Since the Job Router acts on jobs by placing
the transformed copy of the job as a new (linked) job in the job queue, the size of the queue is
increased by the number of concurrently routed jobs.

As shown in Figure 1.2, we found that there was little difference in throughput between
queues of 10,000 jobs and 100,000 jobs, so the Job Router appears to scale well within that
range. We expected it to scale reasonable well to large job queues, because it uses an efficient
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[ name = "Site 1";
GridResource = "gt2 site1.edu/jobmanager-condor";
Requirements = other.WantJobRouter;
MaxIdleJobs = 10;

]
[ name = "Site 2";
GridResource = "gt2 site2.edu/jobmanager-pbs";
Requirements = other.WantJobRouter;
MaxIdleJobs = 10;
MaxJobs = 100;
set_GlobusRSL = "(maxwalltime=1440))(jobType=single)";

]
[ name = "Site 3";
GridResource = "condor submit.site3.edu condor.site3.edu";
Requirements = other.WantJobRouter;
MaxIdleJobs = 10;
set_remote_jobuniverse = 5;

]

Table 1. The routing table is a
list of ClassAds in Condor’s “new”
ClassAd syntax. Attributes of the
ClassAds specify scheduling policy
and job transformation rules.
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Figure 1. Tests of Job Router 7.3.2 on a 1.6GHz dual AMD Opteron with 7GB RAM. “no-op”
indicates jobs that were transformed into a “done” state, bypassing any grid protocols, but still
going through all the same motions in the Job Router. gt2 shows routing to a Globus GRAM
4.0.7 gatekeeper using the gt2 protocol.

method of maintaining a copy of the job queue. Rather than periodically querying the full state
of the schedd’s job queue, Job Router reads from the job queue transaction log and simply
adjusts its copy of the queue as new transactions are committed to the log by the schedd.

In the “no-op” test, where jobs were routed without going to the grid, the throughput
plateaued between 9 and 15 jobs/s. This is about half the maximum rate that one can submit
jobs to the schedd. Since the Job Router has to finalize the jobs as well as submit them, it is
reasonable that it achieved about half the maximum submission rate.

When routing jobs to Globus GRAM using the gt2 protocol, Job Router is doing all the same
work that it did in the no-op case, so we attribute the considerably lower throughput in the gt2
case to something in Condor-G or Globus GRAM. We believe the Condor-G/Globus bottleneck
is per-gatekeeper, so we expect total throughput to scale linearly with the number of target
gatekeepers at least to the 10 jobs/s range achieved in the no-op case.
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Figure 2. When the failure
rate goes above the specified
threshold (0.01 jobs/s in this
example), routing of jobs to
the failing site is limited.

1.3. Handling Errors
The simple Job Router scheduling algorithm outlined so far may be thought of as a “positive
pressure” scheduler. It tries to keep all of the available sites busy by pushing jobs to them as
fast as they run. A problem with this kind of scheduler is evident when one of the sites has
a problem that causes jobs to rapidly fail for a period of time. This is commonly known as a
“black hole”. It can quickly consume (and fail) a large queue of jobs in a short span of time.
Even if job failure is automatically handled by resubmission of failed jobs, rapid failure can
create excessive stress on numerous parts of the system and can therefore make it difficult to
keep the good sites busy when one bad site is generating so much work for the job-handling
software.

To guard against this, the Job Router can set thresholds on the highest acceptable failure
rate for each route. The test for failure is arbitrary and could even be a simple check that jobs
do not complete unexpectedly quickly. When the failure rate exceeds the threshold, the rate at
which new jobs are sent to the affected site is restricted in order to bring the failure rate down
to the threshold. Evidence of successful job completion will cause the restriction to be gradually
relaxed. Figure 2 shows a test run in which total failure of a site was induced.

In practice, we have found this “black hole” avoidance to be effective in a number of real-
world circumstances in the Open Science Grid. Examples are shared filesystem failure, storage
element failure, and unexpected state in the pre-installed application repository. However some
types of problems are not problems of the whole site but rather of an individual worker node
at the site, which may still be capable of producing a very high failure rate. In such cases,
throttling the whole site has the undesirable effect of also reducing access to the large fraction
of the site that is functioning normally. However, in the absence of some way of avoiding the
black hole node, most jobs sent to the site may end up failing, because the bad node finishes
jobs so quickly that it is always free to accept more.

We have found that a crude but effective strategy in this case is to wrap the job with a script
that enforces a minimum run time in case of failure (e.g. 20 minutes). This “plug script” keeps
the bad node occupied for long enough to keep it from rapidly consuming all idle jobs. The
site-level throttle is still useful in case of a problem affecting the whole site, or in case of a worker
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node that is broken in a way that causes the plug script itself to fail.

1.4. CMS Simulation using Job Router
The CMS experiment provides a Monte Carlo event simulation service. The computational
workload for this “official production activity” is generated and tracked by a software package
called prodAgent[2]. The simulation jobs are distributed across LCG and OSG sites.

For the portion of CMS simulation that runs on OSG, the Job Router is used to do the
site-level scheduling. prodAgent is configured to generate vanilla universe condor jobs. The
Job Router is given a routing table that includes an entry for each of the dozen or so desired
compute elements.

At a given time, the system may have tens of thousands of jobs instantiated in the Condor
queue with up to six thousand jobs routed to 10 grid sites. A number of different datasets
may be in production concurrently. For ease of management, the production operator found it
convenient to generate datasets at specific sites, rather than distributing jobs for all datasets
uniformly across the sites. This was accomplished by advertising the dataset in the job ClassAd
and setting the routing requirements appropriately.

Sometimes dataset priorities will change, or site productivity will change and it becomes
desirable to alter the way the sites are being used. Since the routing table can be modified at
any time, it is a simple matter to change the mapping of datasets to sites for the remaining jobs
that are waiting to run.

Jobs that have already been routed to a site and which are waiting to run or waiting to finish
running can be rerouted as well. When a job is routed, it appears twice in the Condor job queue,
once with the original job description and once with the transformed job description. Removing
the routed copy of the job resets the job back to the original state, after which it may be routed
again using the latest routing table. In practice, this simple mechanism has proved useful.

2. glideinWMS
Another recent advance relevant to LHC is in the scalability of the Condor glidein component
of glideinWMS (the glidein Workload Management System used by CMS). This topic is covered
in further detail elsewhere[3]. In some ways, glideinWMS is a more elegant solution to the Job
Router scheduling task. Rather than turning vanilla Condor jobs into grid jobs, it turns the grid
into a Condor pool. Here we give a brief comparison of Job Router and glideinWMS to give an
idea of their relative strengths.

One of the key features of the Job Router is that it delays scheduling decisions until it is
forced to make them. When it sees that the sites are too busy to run more jobs, it delays deciding
what to do with the remaining ones. glideinWMS takes lazy scheduling one step further. It
doesn’t send a job to a site until a specific worker node at the site has been allocated to run the
job. glideinWMS is a specific case of the general approach known as job pilots[4].

Whereas Job Router pushes jobs to grid sites, glideinWMS instead pushes glidein pilot jobs
to the sites. The glideins are then responsible for pulling jobs from the central queue directly
to a worker node that the glidein has been given to run on. In this sense, Job Router schedules
by positive pressure (pushing) and glideinWMS schedules by negative pressure (pulling).

The advantage of the pilot way is that the user’s job is never at the mercy of a site’s job
queue. Job Router, on the other hand, pushes jobs from the central queue into the job queues
of the grid sites. It makes no attempt to understand the policies and conditions of those queues
except for keeping track of the state of the jobs it has already pushed there, so it has little idea
which site will be able to run a given job the soonest. This means it could end up routing a job
to site A, which will not start running the job for a few hours, when site B would have started
running the job in a few minutes. glideinWMS, on the other hand, keeps some idle pilot jobs in
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the queues of both sites, and the first one which begins running will pull the next waiting job
from the central queue.

When the number of top priority jobs waiting to run is large compared to the size of the grid
(i.e. the number of jobs the Job Router has concurrently queued at all sites), the choice of site
for the next job to be scheduled doesn’t really matter, because the scheduler can afford to push
some jobs to each site and just try them all. This is the high-throughput workflow regime in
which the Job Router approach is reasonable. When the number of waiting top priority jobs is
small compared to the grid, the Job Router will sometimes make poor choices relative to a pilot
system such as glideinWMS.

Even pilot systems can’t always choose the site which would successfully finish the job soonest.
For extremely urgent jobs in a small workflow, or at the tail of a high-throughput workflow
when a few jobs are “holding things up”, it may be advantageous to schedule concurrent runs
of the same job and have them race to completion, such as in the JugMaster pilot system[5].
In principle, this could be done also in Job Router, analogous to multi-cast routing, but this
functionality has not been implemented.

In the handling of errors, both the Job Router and glideinWMS have to be careful to avoid
black holes. However, glideinWMS has the advantage of being able to test for any anticipated
problems before pulling a job from the work queue. This may reduce churn in the job handling
system and somewhat detangle analysis of site problems from job problems.

If there is one aspect where Job Router has an advantage over glideinWMS, it is simplicity.
Setting up Job Router is a fairly trivial process–adding a few lines to a Condor configuration
file and watching over one additional daemon. glideinWMS requires secure communication with
the worker node, perhaps traversing firewalls and NATs, and it requires a system for pushing
glidein pilots to the sites. It may also require interaction with a grid-aware execution service
such as glExec on the worker nodes to correctly distinguish between the pilot job’s identity and
the job owner’s identity. This added complexity means there are more things that need to be
watched over and understood in case things go wrong.

Fortunately, recent developments in the glideinWMS system have significantly reduced
complexity while increasing scalability and reliability[3]. Although we continue to prefer Job
Router for large workflows with many equally prioritized jobs, or for situations in which the
support footprint must be kept to a minimum, we think glideinWMS does offer advantages in
other situations. We think it is especially attractive if it can be deployed and supported centrally
as a service that benefits a whole community. Use of glideins in this way has been a successful
model for CDF[6].

3. Condor Scalability Improvements
In recent releases, a concerted effort has been made to improve scalability and performance of the
Condor batch system. This benefits users with large workflows. It also benefits glideinWMS,
which is essentially a huge Condor pool, potentially dwarfing individual Condor pools in the
grid, because it spans across multiple grid sites. Details of scalability enhancements that are
most relevant to the glideinWMS case are described elsewhere[3].

The large workflows of LHC analysis demand scalability of the job queue to at least 10s of
thousands of jobs. Experience in the field and tests of Condor with job queues of up to 100,000
jobs helped us identify a number of problematic algorithms that worked fine at small scale but at
larger scale grew increasingly cpu-intensive in a non-linear fashion. Some of the improvements
over time are demonstrated in Figure 3.

In many cases, the scalability and performance improvements have a much broader pay-off
than is suggested by simple metrics. Our experience in busy environments, such as on the OSG
compute elements of large sites, is that cases where the Condor schedd simply “melts down” and
times out repeatedly are noticeably less common using the recent higher performing versions of
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Figure 3. The Condor schedd demonstrates improved peak performance and scales well in tests
of job queues ranging up to 100,000 jobs on a 1.6GHz AMD Opteron dual CPU machine with
7GB RAM.

Figure 4. A typical week in the Wisconsin CMS Tier-2 computing center. Users quickly
generate large workflows and manipulate collections of jobs exceeding the level of 5000 that was
once a scalability limit.

Condor. The cost of some operations, such as syncs to disk of the job queue log, can be quite
variable, depending on other activity on the computer. An optimization that amounts to a
25% performance boost in an idealized environment can make the difference between reasonable
operation and complete failure in a more chaotic environment.

4. Impact for LHC Physicists
We work closely with physicists using the Wisconsin Tier-2 CMS Computing Center. For them,
the benefits of our recent Condor developments are quite simple: they can quickly generate
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Figure 5. Usage of University
of Wisconsin Madison campus
Condor pools by CMS, March
2008 to 2009.

larger workflows and they get their results back faster than ever before. A snapshot of the job
queue in a typical week is shown in Figure 4. Cases where users have to be asked to limit how
many jobs they put into the queue no longer occur. Cases where the number of concurrently
running jobs have to be limited to protect Condor are also a thing of the past.

Figure 5 shows the significant Condor usage by CMS in the University of Wisconsin Madison
campus over the past year (over 7.5 million CPU-hours). In addition to the “cmsprod” activity,
which is centralized Monte Carlo simulation, a significant amount of user-generated activity has
been taking place. In order to balance the need for fast turnaround in user analysis with the
need for longer-running simulation jobs, we created a “fast queue” for analysis jobs. When jobs
run in the “fast queue,” jobs in the normal queue are suspended by Condor. When the fast
queue job finishes, the suspended job resumes where it left off. In this way, users can get results
quickly while avoiding preemptive killing and restarting of longer running simulation tasks.

5. Conclusion
Recent releases of Condor include a number of enhancements triggered by the needs of LHC
physicists. A much more scalable job queue is probably the most important outcome. In
addition, flexible and high-throughput grid scheduling is provided by Job Router and by
numerous improvements to Condor glidein. Many scheduling challenges remain as we approach
the dawn of LHC data, but we are pleased to look back and see how far the software has come.
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