
Adaptive Scheduling for Master-Worker Applications
on the Computational Grid

Elisa Heymann1, Miquel A. Senar1, Emilio Luque1 and Miron Livny 2

1 Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius
Universitat Autònoma de Barcelona

Barcelona, Spain
{e.heymann, m.a.senar, e.luque}@cc.uab.es

2 Department of Computer Sciences
University of Wisconsin– Madison

Wisconsin, USA

miron@cs.wisc.edu

Abstract*. We address the problem of how many workers should be allocated
for executing a distributed application that follows the master-worker paradigm,
and how to assign tasks to workers in order to maximize resource efficiency
and minimize application execution time. We propose a simple but effective
scheduling strategy that dynamically measures the execution times of tasks and
uses this information to dynamically adjust the number of workers to achieve a
desirable efficiency, minimizing the impact in loss of speedup. The scheduling
strategy has been implemented using an extended version of MW, a runtime
library that allows quick and easy development of master-worker computations
on a computational grid. We report on an initial set of experiments that we
have conducted on a Condor pool using our extended version of MW to
evaluate the effectiveness of the scheduling strategy.

1. Introduction

In the last years, Grid computing [1] has become a real alternative to traditional
supercomputing environments for developing parallel applications that harness
massive computational resources. However, by its definition, the complexity incurred
in building such parallel Grid-aware applications is higher than in traditional parallel
computing environments. Users must address issues such as resource discovery,
heterogeneity, fault tolerance and task scheduling. Thus, several high -level
programming frameworks have been proposed to simplify the development of large
parallel applications for Computational Grids (for instance, Netsolve [2], Nimrod/G
[3], MW [4]).

Several programming paradigms are commonly used to develop parallel programs

* This work was supported by the CICYT (contract TIC98-0433) and by the Commission for

Cultural, Educational and Scientific Exchange between the USA and Spain (project 99186).

on distributed clusters, for instance, Master-Worker, Single Program Multiple Data
(SPMD), Data Pipelining, Divide and Conquer, and Speculative Parallelism [5]. From
the previously mentioned paradigms, the Master-Worker paradigm (also known as
task farming) is especially attractive because it can be easily adapted to run on a Grid
platform. The Master-Worker paradigm consists of two entities: a master and multiple
workers. The master is responsible for decomposing the problem into small tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the
partial results in order to produce the final result of the computation. The worker
processes execute in a very simple cycle: receive a message from the master with the
next task, process the task, and send back the result to the master. Usually, the
communication takes place only between the master and the workers at the beginning
and at the end of the processing of each task. This means that, master-worker
applications usually exhibit a weak synchronization between the master and the
workers, they are not communication intensive and they can be run without
significant loss of performance in a Grid environment.

Due to these characteristics, this paradigm can respond quite well to an
opportunistic environment like the Grid. The number of workers can be adapted
dynamically to the number of available resources so that, if new resources appear they
are incorporated as new workers in the application. When a resource is reclaimed by
its owner, the task that was computed by the corresponding worker may be
reallocated to another worker.

In evaluating a Master-Worker application, two performance measures of
particular interest are speedup and efficiency. Speedup is defined, for each number of
processors n, as the ratio of the execution time when executing a program on a single
processor to the execution time when n processors are used. Ideally we would expect
that the larger the number of workers assigned to the application the better the
speedup achieved. Efficiency measures how good is the utilization of the n allocated
processors. It is defined as the ratio of the time that n processors spent doing useful
work to the time those processors would be able to do work. Efficiency will be a
value in the interval [0,1]. If efficiency is becoming closer to 1 as processors are
added, we have linear speedup. This is the ideal case, where all the allocated workers
can be kept usefully busy.

In general, the performance of master-worker applications will depend on the
temporal characteristics of the tasks as well as on the dynamic allocation and
scheduling of processors to the application. In this work, we consider the problem of
maximizing the speedup and the efficiency of a master-worker application through
both the allocation of the number of processors on which it runs and the scheduling of
tasks to workers at runtime.

We address this goal by first proposing a generalized master-worker framework,
which allows adaptive and reliable management and scheduling of master-worker
applications running in a computing environment composed of opportunistic
resources. Secondly, we propose and evaluate experimentally an adaptive scheduling
strategy that dynamically measures application efficiency and task execution times,
and uses this information to dynamically adjust the number of processors and to
control the assignment of tasks to workers.

The rest of the paper is organized as follows. Section 2 reviews related work in
which the scheduling of master-worker applications on Grid environments was

studied. Section 3 presents the generalized Master-Worker paradigm. Section 4
presents a definition of the scheduling problem and outlines our adaptive scheduling
strategy for master-worker applications. Section 5 describes the prototype
implementation of the scheduling strategy and section 6 shows some experimental
data obtained when the proposed scheduling strategy was applied to some synthetic
applications on a real grid environment. Section 7 summarizes the main results
presented in this paper and outlines our future research directions.

2. Related Work

One group of studies has considered the problem of scheduling master-worker
applications with a single set of tasks on computational grids. They include AppLeS
[6], NetSolve [7] and Nimrod/G [3].

The AppLeS (Application-Level Scheduling) system focuses on the development
of scheduling agents for parallel metacomputing applications. Each agent is written in
a case-by-case basis and each agent will perform the mapping of the user’s parallel
application [8]. To determine schedules, the agent must consider the requirements of
the application and the predicted load and availability of the system resources at
scheduling time. Agents use the services offered by the NWS (Network Weather
Service) [9] to monitor the varying performance of available resources.

NetSolve [2] is a client-agent-server system, which enables the user to solve
complex scientific problems remotely. The NetSolve agent does the scheduling by
searching for those resources that offer the best performance in a network. The
applications need to be built using one of the API’s provided by NetSolve to perform
RPC -like computations. There is an API for creating task farms [7] but it is targeted
to very simple farming applications that can be decomposed by a single bag of tasks.

Nimrod/G [3] is a resource management and scheduling system that focuses on the
management of computations over dynamic resources scattered geographically over
wide-area networks. It is targeted to scientific applications based on the “exploration
of a range of parameterized scenarios” which is similar to our definition of master-
worker applications, but our definition allows a more generalized scheme of farming
applications. The scheduling schemes under development in Nimrod/G are based on
the concept of computational economy developed in the previous implementation of
Nimrod, where the system tries to complete the assigned work within a given deadline
and cost. The deadline represents a time which the user requires the result and the cost
represents an abstract measure of what the user is willing to pay if the system
completes the job within the deadline. Artificial costs are used in its current
implementation to find sufficient resources to meet the user’s deadline.

A second group of researchers has studied the use of parallel application
characteristics by processor schedulers of multiprogrammed multiprocessor systems,
typically with the goal of minimizing average response time [10, 11]. However, the
results from these studies are not applicable in our case because they were focussed
basically on the allocation of jobs in shared memory multiprocessors in which the
computing resources are homogeneous and available during all the computation.
Moreover, most of these studies assume the availability of accurate historical

performance data, provided to the scheduler simultaneously with the job submission.
They also focus on overall system performance, as opposed to the performance of
individual applications, and they only deal with the problem of processor allocation,
without considering the problem of task scheduling within a fixed number of
processors as we do in our strategy.

3. A Generalized Master-Worker paradigm

In this work, we focus on the study of applications that follow a generalized
Master-Worker paradigm because it is used by many scientific and engineering
applications like software testing, sensitivity analysis, training of neural-networks and
stochastic optimization among others. In contrast to the simple master-worker model
in which the master solves one single set of tasks, the generalized master-worker
model can be used to solve of problems that require the execution of several batches
of tasks. Figure 1 shows an algorithmic view of this paradigm.

 Fig. 1. Generalized Master-Worker algorithm

A Master process will solve the N tasks of a given batch by looking for Worker
processes that can run them. The Master process passes a description (input) of the
task to each Worker process. Upon the completion of a task, the Worker passes the
result (output) of the task back to the Master. The Master process may carry out some
intermediate computation with the results obtained from each Worker as well as some
final computation when all the tasks of a given batch are completed. After that a new
batch of tasks is assigned to the Master and this process is repeated several times until
completion of the problem, that is, K cycles (which are later refereed as iterations).

The generalized Master-Worker paradigm is very easy to program. All algorithm
control is done by one process, the Master, and having this central control point
facilitates the collection of job’s statistics, a fact that is used by our scheduling
mechanism. Furthermore, a significant number of problems can be mapped naturally
to this paradigm. N-body simulations [12], genetic algorithms [13], Monte Carlo
simulations [14] and materials science simulations [15] are just a few examples of
natural computations that fit in our generalized master-worker paradigm.

Initialization
Do
 For task = 1 to N
 PartialResult = + Function (task)
 end
 act_on_bach_complete()
while (end condition not met).

Worker
Tasks

Master
Tasks

4. Challenges for scheduling of Master-Worker applications

In this section, we give a more precise definition of the scheduling problem for
master-worker applications and we introduce our scheduling policy.

4.1. Motivations and background

Efficient scheduling of a master-worker application in a cluster of distributively
owned resources should provide answers to the following questions:
• How many workers should be allocated to the application? A simple approach

would consist of allocating as many workers as tasks are generated by the
application at each iteration. However, this policy will incur, in general, in poor
resource utilization because some workers may be idle if they are assigned a short
task while other workers may be busy if they are assigned long tasks.

• How to assign tasks to the workers? When the execution time incurred by the tasks
of a single iteration is not the same, the total time incurred in completing a batch of
tasks strongly dep ends on the order in which tasks are assigned to workers.
Theoretical works have proved that simple scheduling strategies based on list-
scheduling can achieve good performance [16].

We evaluate our scheduling strategy by measuring the efficiency and the total

execution time of the application.
Resource efficiency (E) for n workers is defined as the ratio between the amount of

time workers spent doing useful work and the amount of time workers were able to
perform work.

n: Number of workers.
Twork,i: Amount of time that worker i spent doing useful work.
Tup,i: Time elapsed since worker i is alive until it ends.
Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do any

work.

Execution Time (ET n) is defined as the time elapsed since the application begins its

execution until it finishes, using n workers.

 ET = Tfinish,n - T begin,n

T finish,n: Time of the ending of the application when using n workers.
Tbegin,n: Time of the beginning of the application workers.

As [17] we view efficiency as an indication of benefit (the higher the efficiency,

the higher the benefit), and execution time as an indication of cost (the higher the

∑ ∑

∑

= =

=

−
=

n

i

n

i
isuspiup

n

i
iwork

TT

T
E

1 1
,,

1
,

execution time, the higher the cost). The implied system objective is to achieve
efficient usage of each processor, while taking into account the cost to users. It is
important to know, or at least to estimate the number of processors that yield the point
at which the ratio between efficiency to execution time is maximized. This would
represent the desired allocation of processors to each job.

4.2. Proposed Scheduling Policy

We have considered a group of master-worker applications with an iterative
behavior. In these iterative parallel applications a batch of parallel tasks is executed K
times (iterations). The completion of a given batch induces a synchronization point in
the iteration loop, followed by the execution of a sequential body. This kind of
applications has a high degree of predictability, therefore it is possible to take
advantage of it to decide both the use of the available resources and the allocation of
tasks to workers.

Empirical evidence has shown that the execution of each task in successive
iterations tends to behave similarly, so that the measurements taken for a particular
iteration are good predictors of near future behavior [15]. As a consequence, our
current implementation of adaptive scheduling employs a heuristic-based method that
uses historical data about the behavior of the application, together with some
parameters that have been fixed according to results obtained by simulation.

In particular, our adaptive scheduling strategy collects statistics dynamically about
the average execution time of each task and uses this information to determine the
number of processors to be allocated and the order in which tasks are assigned to
processors. Tasks are sorted in decreasing order of their average execution time.
Then, they are assigned to workers according to that order. At the beginning of the
application execution, no data is available regarding the average execution time of
tasks. Therefore, tasks are assigned randomly. We call this adaptive strategy Random
and Average for obvious reasons.

Initially as many workers as tasks per iteration (N) are allocated for the application.
We first ask for that maximum number of workers because getting machines in an
opportunistic environment is time-consuming. Once we get the maximum number of
machines at the start of an application, we release machines if needed, instead of
getting a lower number of machines and asking for more.

Then, at the end of each iteration, the adequate number of workers for the
application is determined in a two-step approach. The first step quickly reduces the
number of workers trying to ap proach the number of workers to the optimal value.
The second step carries out a fine correction of that number. If the application
exhibits a regular behavior the number of workers obtained by the first step in the
initial iterations will not change, and only small corrections will be done by the
second step.

The first step determines the number of workers according to the workload
exhibited by the application. Table 1 is an experimental table that has been obtained
from simulation studies. In these simulations we have evaluated the performance of
different strategies (including Random and Average policy) to schedule tasks of
master-worker applications. We tested the influence of several factors: the variance

of tasks execution times among iterations, the balance degree of work among tasks,
the number of iterations and the number of workers used [18].

Table 1 shows the number of workers needed to get efficiency greater than 80%
and execution time less than 1.1 the execution time when using N workers. These
values would correspond to a situation in which resources are busy most of the time
while the execution time is not degraded significantly.

Table 1. Percentage of workers with respect to the number of tasks.

Workload <30% 30% 40% 50% 60% 70% 80% 90%
%workers (largest tasks similar size) Ntask 70% 55% 45% 40% 35% 30% 25%
%workers (largest tasks diff. size) 60% 45% 35% 30% 25% 20% 20% 20%

The first row contains the workload, defined as the work percentage done when
executing the largest 20% tasks. The second and third rows contain the workers
percentage with respect to the number of tasks for a given workload in the cases that
the 20% largest tasks have similar and different executions times respectively.

For example, if the 20% largest tasks have carried out 40% of the total work then
the number of workers to allocate will be either N*0,55 or N*0,35. The former value
will be used if the largest tasks are similar, otherwise the later value is applied.
According to our simulation results the largest tasks are considered to be similar if
their execution time differences are not greater than 20%.

The fine correction step is carried out at the end of each iteration when the
workload between iterations remains constant and the ratio between the last iteration
execution time and the execution time with the current number of workers given by
table 1 is less than 1.1. This correction consists of diminishing by one the number of
workers if efficiency is less than 0.8, and observing the effects on the execution time.
If it gets worse a worker is added, but never surpassing the value given by table 1.
The complete algorithm is shown in figure 2.

1. In the first iteration Nworkers = Ntasks

Next steps are executed at the end of each iteration i.
2. Compute Efficiency, Execution Time, Workload and the Differences of the execution times

of the 20% largest tasks.
3. if (i == 2)

Set Nworkers = NinitWorkers according to Workload and Differences of Table 1.
else

if (Workload of iteration i != Workload of iteration i-1)
 Set Nworkers = NinitWorkers according to Workload and Differences of Table 1
 else
 if (Execution Time of it. i DIV Execution Time of it. 2 (with NinitWorkers) <= 1.1)
 if (Efficiency of iteration i < 0.8)
 Nworkers = Nworkers – 1
 else
 Nworkers = Nworkers + 1

Fig. 2. Algorithm to determine Nworkers.

5. Current implementation

To evaluate both the proposed scheduling algorithm and the technique to adjust the
number of workers we have run experiments on a Grid environment using MW
library as a Grid middleware. First, we will briefly review the main characteristics of
MW and then we will summarize the extensions included to support both our
generalized master-worker paradigm and the adaptive scheduling policy.

5.1. Overview of MW

MW is a runtime library that allows quick and easy development of master-worker
computations on a computational grid [4]. It handles the communication between
master and workers, asks for available processors and performs fault-detection. An
application in MW has three base components: Driver, Tasks and Workers. The
Driver is the master, who manages a set of user-defined tasks and a pool of workers.
The Workers execute Tasks. To create a parallel application the programmer needs to
implement some pure virtual functions for each component.

Driver: This is a layer that sits above the program’s resource management and
message passing mechanisms. (Condor [19] and PVM [20], respectively, in the
implementation we have used). The Driver uses Condor services for getting machines
to execute the workers and to get information about the state of those machines. It
creates the tasks to be executed by the workers, sends tasks to workers and receives
the results. It handles workers joining and leaving the computation and rematches
running tasks when workers are lost. To create the Driver, the user needs to
implement the following pure virtual functions:
• get_userinfo(): Processes arguments and does initial setup.
• setup_initial_tasks(): Creates the tasks to be executed by the workers.
• pack_worker_init_data(): Packs the initial data to be sent to the worker upon

startup.
• act_on_completed_task(): This is called every time a task finishes.

Task: This is the unit of work to be done. It contains the data describing the tasks
(inputs) and the results (outputs) computed by the worker. The programmer needs to
implement functions for sending and receiving this data between the master and the
worker.

Worker: This executes the tasks sent to it by the master. The programmer needs to
implement the following functions:
• unpack_init_data(): Unpacks the initialization data passed in the Driver

pack_worker_init_data() function.
• execute_task(): Computes the results for a given task.

5.2. Extended version of MW

In its original implementation, MW supported one master controlling only one set
of tasks. Therefore we have extended the MW API to support our programming
model, the Random and Average scheduling policy and to collect useful information
to adjust the number of workers.

To create the master process the user needs to implement another pure virtual
function: global_task_setup. There are also some changes in the functionality of
some others pure virtual functions:
• global_task_setup(): It initializes the data structures needed to keep the tasks

results the user want to record. This is called once, before the execution of the first
iteration.

• setup_initial_tasks (iterationNumber): The set of tasks created depends on the
iteration number. So, there are new tasks for each iteration, and these tasks could
depend on values returned by the execution of previous tasks. This function is
called before each iteration begins, and creates the tasks to be executed in the
iterationNumber iteration.

• get_userinfo(): The functionality of this function remains the same, but the user
needs to call the following initialization functions there:
− set_iteration_number (n): This is used to set the number of times tasks will be

created and executed, that is, the number of iterations. If INFINITY is used to
set the iterations number, then tasks will be created and executed until an end
condition is achieved. This condition needs to be set in the function
end_condition().

− set_Ntasks (n): This is used to set the number of tasks to be executed per
iteration.

− set_task_retrive_mode (mode): This function allows the user to select the
scheduling policy. It can be FIFO (GET_FROM_BEGIN), based on a user
key (GET_FROM_KEY), random (GET_RANDOM) or random and average
(GET_RAND_AVG).

− printresults (iterationNumber): It allows the results of the iterationNumber
iteration to be printed.

In addition to the above changes, the MWDriver collects statistics about tasks

execution time, workers’ state (when they are alive, working and suspended), and
about iteration beginning and ending.

At the end of each iteration, function UpdateWorkersNumber() is called to adjust
the number of workers accordingly with regard to the algorithm explained in the
previous section.

6. Experimental study in a grid platform

In this section we report the preliminary set of results obtained with the aim of
testing the effectiveness of the proposed scheduling strategy. We have executed some
synthetic master-worker applications that could serve as representative examples of

the generalized master-workers paradigm. We run the applications on a grid platform
and we have evaluated the ability of our scheduling strategy to dynamically adapt the
number of workers without any a priori knowledge about the behavior of the
applications.

We have conducted experiments using a grid platform composed of a dedicated
Linux cluster running Condor, and a Condor pool of workstations at the University of
Wisconsin. The total number of available machines was around 700 although we
restrict our experiments to machines with Linux architecture (both from the dedicated
cluster and the Condor pool). The execution of our application was carried out using
the grid services provided by Condor for resource requesting and detecting,
determining information about resources and fault detecting. The execution of our
application was carried out with a set of processors that do not exh ibit significant
differences in performance, so that the platform could be considered to be
homogeneous.

Our applications executed 28 synthetic tasks at each iteration. The number of
iterations was fixed to 35 so that the application was running in a steady state most of
the time. Each synthetic task performed the computation of a Fibonacci series. The
length of the series computed by each task was randomly fixed at each iteration in
such a way that the variation of the execution time of a given task in successive
iterations was 30%. We carried out experiments with two synthetic applications that
exhibited a workload distribution of 30% and 50% approximately. In the former case,
all large tasks exhibited a similar execution time. In the latter case, the execution time
of larger tasks exhibited significant differences. These two synthetic programs can be
representative examples for master-worker applications with a highly balanced
distribution of workload and medium balanced distribution of workload between
tasks, respectively. Figure 3 shows, for instance, the average and the standard
deviation time for each of the 28 tasks in the master-worker with a 50% workload.

Different runs on the same programs generally produced slightly different final
execution times and efficiency results due to the changing conditions in the grid
environment. Hence, average-case results are reported for sets of three runs.

Tables 2 and 3 show the efficiency, the execution time (in seconds) and the
speedup obtained by the execution of the master-worker application with 50%
workload and 30% workload, respectively. The results obtained by our adaptive
scheduling are shown in bold in both tables. In addition to these results, we show the
results obtained when a fixed number of processors were used during the whole
execution of the application. In particular, we tested a fixed number of processors of
n=28, n=25, n=20, n=15, n=10, n=5 and n=1. In all cases the order of execution was
carried out according to the sorted list of average execution time (as described in
previous section for the Random and Average policy). The execution time for n=1
was used to compute the speedup of the other cases. It is worth pointing out that the
number of processors allocated by our adaptive strategy was obt ained basically
through table 1. Only in the case of 30% workload, did the fine adjustment carry out
the additional reduction of the number of processors.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Task number

Tasks Average Execution Time

Fig. 3. Tasks execution times.

Table 2. Experimental results in the execution of a master-worker application with 50%
workload using the Random and Average policy.

#Workers 1 5 8 10 15 20 25 28
Efficiency 1 0,94 0,80 0,65 0,43 0,33 0,28 0,22
Exec. Time 80192 16669,5 12351 12365 13025 12003 12300,5 12701
Speedup 1 4,81 6,49 6,49 6,16 6,68 6,52 6,31

Table 3. Experimental results in the execution of a master-worker application with 30%
workload using the Random and Average policy.

#Workers 1 5 10 15 18 20 25 28
Efficiency 1 0,85 0,85 0,87 0,78 0,72 0,59 0,55
Exec. Time 36102 9269 4255 3027 2459 2710 2794 2434
Speedup 1 3,89 8,48 11,93 14,68 13,32 12,92 14,83

The first results shown in tables 2 and 3 are encouraging as they prove that an

adaptive scheduling policy like Random and Average was able, in general, to achieve
a high efficiency in the use of resources while the speedup was not degraded
significantly. The improvement in efficiency can be explained because our adaptive
strategy tends to use a small number of resources with the aim of avoiding idle time in
workers that compute short tasks. In general, the larger the number of processors the
larger the idle times incurred by workers in each iteration. This situation is also more
remarkable when the workload of the application is more unevenly distributed among
tasks. Therefore, for a given number of processors the largest loss of efficiency was
obtained normally in the application with a 50% workload.

It can also be observed in both tables that the adaptive scheduling strategy obtained
in general an execution time that was similar or even better than the execution time
obtained with a larger number of processors. This result basically reflects the
opportunistic nature of the resources that were used in our experiments. The larger the

number of processors allocated, the larger the number of task suspensions and
reallocations incurred at run time. The need to terminate a task prematurely when the
user claimed back the processor prevented normally the benefits in execution time
obtained by the use of additional processors. Therefore, from our results, we conclude
that, the reduction in the number of processors allocated to an application running in
an opportunistic environment is good not only because it improves overall efficiency,
but it also avoids side effects on the execution time due to suspensions and
reallocations of tasks.

As is perhaps to be expected, the best performance was normally obtained when
the largest number of machines were used, although better machine efficiencies were
obtained when a smaller number of machines were used. These results may seem to
be obvious, but it should be stressed that they have been obtained from a real test-bed,
in which resources were obtained from a total pool of non-dedicated 700 machines. In
this test-bed our adaptive scheduler used only statistics information collected at
runtime, and the execution of our applications should copse with the effects of
resource obtaining, local suspension of tasks, task reassume and dynamic
redistribution of load.

We carried out an additional set of experiments in order to evaluate the influence in
the order of task assignment. Due to time constraints, this article only contains the
results obtained when a master-worker application with 50% workload was scheduled
using a Random policy. In this policy, when a worker becomes idle, a random task
from the list of pending tasks is chosen and assigned to it. As can be seen when tables
2 and 4 are compared, the order in which tasks are assigned has a significant impact
when a small number of workers is used. For less than 15 processors the Random and
Average policy performs significantly better than the Random policy, both in
efficiency and in execution time. When 15 or more processors are used, differences
between both policies were nearly negligible. This fact can be explained because
when the Random policy has a large number of available processors, the probability
to assign a large task at the beginning is also large. Therefore, in these situations the
assignments carried out by both polices are likely to follow a similar order. Only in
the case of 20 processors, was Random’s performance significantly worse than
Random & Average. However, this could be explained because the tests of the
Random policy with 20 processors suffered from many task suspensions and
reallocations during their execution.

Table 4. Experimental results for Random scheduling with a master-worker application with
50% workload.

#Workers 1 5 10 15 20 25 28
Efficiency 1 0,80 0,56 0,40 0,34 0,26 0,26
Exec. Time 80192 20055 14121 13273 13153 12109 12716
Speedup 1 4,00 5,68 6,04 6,10 6,62 6,31

7. Conclusions and future work

In this paper, we have discussed the problem of scheduling master-worker
applications on the computational grid. We have presented a framework for master-
worker applications that allow the development of a tailored scheduling strategy. We
have proposed a scheduling strategy that is both simple an adaptive and takes into
account the measurements taken during the execution of the master-worker
application. This information is usually a good predictor of near future behavior of the
application. Our strategy tries to allocate and schedule the minimum number of
processors that guarantees a good speedup by keeping the processors as busy as
possible and avoiding situations in which processors sit idle waiting for work to be
done. The strategy allocates the suitable number of processors by using the runtime
information obtained from the application, together with the information contained in
an empirical table that has been obtained by simulation. Later, the number of
processors would eventually be adapted dynamically if the scheduling algorithm
detects that the efficiency of the application can be improved without significant
losses in performance.

We have built our scheduling strategy using MW as a Grid middleware. And we
tested the scheduling strategy on a Grid environment made of several pools of
machines, the resources of which were provided by Condor. The preliminary set of
tests with synthetic applications allowed us to validate the effectiveness of our
scheduling strategy. In general, our adaptive scheduling strategy achieved an
efficiency in the use of processors close to 80% while the speedup up of the
application was close to the speedup achieved with the maximum number of
processors. Moreover, we have observed that our algorithm quickly achieves a stable
situation with a fixed number of processors.

There are some ways in which this work can be extended. We have tested our
strategy on a homogeneous Grid platform where the resources were relatively closed
and the influence of the network latency was negligible. A first extension will adapt
the proposed scheduling strategy to handle a heterogeneous set of resources. In order
to carry this out, a normalizing factor should be applied to the average execution
times to index table 1. Another extension will focus on the inclusion of additional
mechanisms that can be used when the distance between resources is significant (for
instance, by packing more than one task to a distant worker in order to compensate
network delays). A second extension will be oriented to the extension of the
scheduling strategy to be applied for applications that are not iterative or that exhibit
different behaviors at different phases of the execution. This extension would be
useful for applications that follow, for instance, a Divide and Conquer paradigm or a
Speculative Parallelism paradigm.

8. References

1. I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infraestructure”,
Morgan-Kaufmann, 1999.

2. H. Casanova and J. Dongarra, “NetSolve: Network enabled solvers”, IEEE Computational
Science and Engineering, 5(3) pp. 57-67, 1998.

3. D. Abramson, J. Giddy, and L. Kotler, "High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?”, in Proc. of IPPS/SPDP’2000, 2000.

4. J.-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, “An enabling framework for master-
worker applications on the computational grid”, Tech. Report, University of Wisconsin –
Madison, March, 2000.

5. L. M. Silva and R. Buyya, “Parallel programming models and paradigms”, in R. Buyya
(ed.), “High Performance Cluster Computing: Architectures and Systems: Volume 2”,
Prentice Hall PTR, NJ, USA, 1999.

6. F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, “Application-Level Scheduling
on Distributed Heterogeneous Networks”, Proc. of Supercomputing’96.

7. H. Casanova, M. Kim, J. S. Plank and J. Dongarra, “Adaptive scheduling for task farming
with Grid middleware”, International Journal of Supercomputer Applications and High-
Performance Computing, pp. 231-240, Volume 13, Number 3, Fall 1999.

8. G. Shao, R. Wolski and F. Berman, “Performance effects of scheduling strategies for
Master/Slave distributed applications”, Technical Report T R-CS98-598, University of
California, San Diego, September 1998.

9. R. Wolski, N. T. Spring and J. Hayes, “The Network Weather Service: a distributed
resource performance forecasting service for metacomputing”, Journal of Future
Generation Computing System s”, Vol. 15, October, 1999.

10. T. B. Brecht and K. Guha, “Using parallel program characteristics in dynamic processor
allocation policies”, Performance Evaluation, Vol. 27 and 28, pp. 519-539, 1996.

11. T. D. Nguyen, R. Vaswani and J. Zahorjan, “Maximizing speedup through self-tuning of
processor allocation”, in Proc. of the Int. Par. Proces. Symp. (IPPS’96), 1996.

12. V. Govindan and M. Franklin, “Application Load Imbalance on Parallel Processors”, in
Proc. of the Int. Paral. Proc. Symposium (IPPS’96), 1996.

13. E. Cantu-Paz, “Designing efficient master-slave parallel genetic algorithms”, in J. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon D. E. Goldberg, H.
Iba and R. Riolo, editors, Genetic Programming: Proceeding of the Third Annual
Conference, San Francisco, Morgan Kaufmann, 1998.

14. J. Basney, B. Raman and M. Livny, “High throughput Monte Carlo”, Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio
Texas, 1999.

15. J. Pruyne and M. Livny, “Interfacing Condor and PVM to harness the cycles of
workstation clusters”, Journal on Future Generations of Computer Systems, Vol. 12, 1996.

16. L. A. Hall, “Aproximation algorithms for scheduling”, in Dorit S. Hochbaum (ed.),
“Approximation algorithms for NP-hard problems”, PWS Publishing Company, 1997.

17. D. L. Eager, J. Zahorjan and E. D. Lazowska, “Speedup versus efficiency in parallel
systems”, IEEE Transactions on Computers, vol. 38, pp. 408-423, 1989.

18. E. Heymann, M. Senar, E. Luque, M. Livny. “Evaluation of an Ada ptive Scheduling
Strategy for Master-Worker Applications on Clusters of Workstations”. Proceedings of 7th
Int. Conf. on High Performance Computing (HiPC’2000) (to appear).

19. M. Livny, J. Basney, R. Raman and T. Tannenbaum, “Mechanisms for high throughput
computing”, SPEEDUP, 11, 1997.

20. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, “PVM:
Parallel Virtual Machine A User’s Guide and Tutorial for Networked Parallel
Computing”, MIT Press, 1994.

