

A Generic Proxy Mechanism for Secure Middlebox Traversal

Sechang Son, Matthew Farrellee, and Miron Livny
Computer Science Department, University of Wisconsin
{sschang, matt, miron}@cs.wisc.edu

Abstract

Firewalls/NATs have brought significant
connectivity problems along with their benefits,
causing many applications to break or become
inefficient. Due to its bi-directional communication,
huge scale, and multi-organizational nature, the Grid
may be one of the areas damaged most by the
connectivity problem. Several ideas to deal with the
connectivity problem were investigated and many
systems are available. However, many issues still
remain unanswered. Most systems are firewall/NAT
unfriendly and are considered harmful to network
security; the tussle between these devices trying to
investigate payloads and applications trying to protect
their content from observation and modification must
be reconciled. This paper discusses how a simple
relay-based system, called XRAY (middleboX traversal
by RelAYing), deals with these issues and provides
other benefits such as flexible traffic control. This
paper also discusses how relay-based traversal
systems can help applications to communicate over
firewalls/NATs and also complement firewall/NAT
operations to help network security.

1. Introduction

Firewalls and NATs [1] (collectively called
middleboxes1 in this paper) provide many benefits such
as easy address planning, network protection, and a
solution to the IPv4 address shortage. However, these
devices come at a price, notably non-universal
connectivity of the Internet. In general, two endpoints
separated by one or more middleboxes cannot
communicate with each other. The Internet has become
asymmetric because most middleboxes allow outbound
(to the world) but block inbound (from the world)

1 Though IETF uses "middleboxes" to refer to more
than just NATs and firewalls [13], it currently focuses
on those two devices.

communications. Due to this connectivity problem,
many applications break or become inefficient. The
Grid [2] may be one of the most damaged areas
because it generally requires bi-directional and many-
to-many connectivity among geographically distributed
organizations. Client-server applications can get
around the asymmetry problem by placing servers in
publicly accessible places such as a DMZ. This
approach does not work for the Grid because a node
may act both as a client and a server. In grids, the
connectivity problem generally results in the waste of
resources because researchers may not harness
resources separated from their networks by
middleboxes. Computing jobs cannot be staged from
the public network into a network behind a middlebox,
and vice versa [4] [5]; data placement cannot be
completed because data cannot move into or out of a
network behind a middlebox.

Middleware approaches are very attractive for
dealing with the connectivity problem. They are easy
to deploy because neither the Internet nor operating
systems need be changed, and many applications can
benefit from them. Especially middleware providing
APIs similar to the Berkeley socket API is desirable for
easy deployment because it is well understood and is
used by many network applications. Many middleware
traversal mechanisms were studied or are under
investigation for dealing with the connectivity problem.
However, we still have many problems and issues left
unanswered:

Middlebox friendly? Some traversal systems,
often ironically called firewall-friendly [17], have

adverse effects to network security. Some systems,
notably in P2P file sharing systems, disguise their
traffic to deceive middleboxes (or administrators).
Other systems such as GCB [10], STUN [11], and
TURN [12] exploit common middlebox behavior or
configuration to the extent that network
administrators never intended. For this reason,
network administrators generally consider middlebox
traversal systems to harm network security and are
reluctant to deploy them. Systems such as DPF [10],

SOCKS [14], and RSIP [15] have little or no adverse
effect on network security. However, these systems
suffer from similar problems because they do not
describe how their traversal mechanisms fit in with
network security enforcement.

Asymmetry. Most middleboxes are configured to
allow outbound connections while blocking inbound
ones. Using this common practice, previous systems
assume that outbound connections are allowed and
help applications only with inbound connections.
More and more organizations want to control
communications in both directions for reasons such
as security and legal issues. To support such
restrictive organizations, a traversal mechanism must
help both inbound and outbound connections in a
controlled manner.

Tussle

[3] between applications and
middleboxes. Many applications encrypt contents
with strong security mechanisms to protect their
payloads from observation or modification. On the
other hand, some middleboxes want to inspect
payloads for better filtering, intrusion detection, etc.
When those middleboxes cannot look inside packets,
they generally drop packets. Therefore, we must find
a resolution or reasonable compromise of this tussle.

This paper discusses how well a simple relay
based system, called XRAY (middleboX traversal by
RelAYing), deals with these issues and provides other
benefits such as flexible traffic control. XRAY helps
authorized applications to traverse middleboxes by
relaying both inbound and outbound traffic. It also
helps network security by dropping packets for
unauthorized applications. Since it provides the
Berkeley socket API, any network application can be
easily XRAY enabled. In our previous work [16], we
presented CODO (Cooperative On-Demand Opening),
which provides similar benefits as XRAY for
organizations using the middleboxes that can be
dynamically controlled by the add-on software we
provide. However, unlike CODO, XRAY does not
require dynamic control over middleboxes and has no
restrictions on the type of middlebox it can support.
XRAY also provides stronger control over traffic with
a minor amount of performance overhead compared to
CODO. SOCKS [14] also shares many characteristics
and benefits with XRAY. However, it is designed only
for client-server applications and may not be used by
the Grid. We will further explain this and another
limitation of SOCKS in §9.

Relaying mechanisms have been considered as a
secure way of middlebox traversal for years. Our
contribution is (1) the reconsideration of the relaying
mechanism as a middlebox traversal system in a
broader and formalized context and (2) XRAY, a relay-
based system, which realizes the benefits of the

relaying mechanism.
In §2, we present a packet flow model within a

middlebox and define the middlebox traversal problem
within that model [16]. We include the model to make
the paper self-contained. In §3, we introduce a concept
that is important to secure traversal of middleboxes.
The architecture and connection procedure of XRAY
are presented in §4 and §5, respectively. §6 discusses
the fault tolerance issue and §7 explains the
implementation. §8 and §9 present performance data
and related research, respectively.

2. Model and Problem Definition

The middlebox traversal problem has been around
for many years, yet it remains vaguely defined, raising
many questions such as "if a middlebox is opened for
an application, does it blindly pass packets to/from the
application?" and "how does a traversal mechanism fit
in the security policy the middlebox tries to enforce?"
To avoid confusion, we define the problem as follows.

Middleboxes block malicious or unwanted traffic
while allowing benign and desired traffic. What is
malicious or unwanted (or equivalently benign and
desired) is defined by middlebox rules. To traverse a
middlebox, a packet must pass a chain of one or more
tests defined by the middlebox rules. If a packet fails a
test, it is rejected. Otherwise, it continues to traverse
the chain of tests until it fails a test or passes all the
tests.

Figure 1 shows a packet flow model in a
middlebox. When a packet enters a middlebox, it
undergoes one or more tests that we collectively call
the application-neutral test. This test specifies
application-independent conditions such as IP address,
source routing flag, and ICMP message type. This test
drops packets considered dangerous no matter what
application sends or receives them. For example,
overly fragmented packets are considered dangerous
and may be dropped at this stage. If a packet passes
this test, it is either accepted or sent to the owner test.
The owner test allows traffic for authorized
applications and blocks traffic for unauthorized or
dangerous applications. For example, many
middleboxes allow SSH but block telnet and rlogin
traffic. If a packet belongs to an authorized application,
it may be allowed or sent to auxiliary tests specifically
designed for individual applications. If an application
is known to be vulnerable, say to a buffer overflow
attack, an administrator may have an owner test rule to
block the application. However, a better approach is to
pass the application traffic only if it does not contain
an attack signature. The auxiliary tests can be used to
block only malicious packets while allowing benign
ones.

Application Neutral
Test

Owner
Test

Auxiliary
Test

in allowed

more test

more test

passed

passed

passed

for app-1

Auxiliary
Test

Auxiliary
Test

for app-i for app-n

Application Neutral
Test

Owner
Test

Auxiliary
Test

in allowed

more test

more test

passed

passed

passed

for app-1

Auxiliary
Test

Auxiliary
Test

for app-i for app-n

Figure 1: Packet flow model. Within a middlebox, packets traverse application-neutral, owner, and auxiliary tests in
that order. Auxiliary and owner tests are not applied for some packets.

Depending on middlebox implementations and
configurations, packets may flow differently from our
model: tests may be applied in a different order;
multiple tests from different stages may be combined;
some tests are not available in a middlebox and may be
performed by a third party product such as an IDS
(Intrusion Detection System) [9]. However, we believe
that this model is general and accurate enough for our
discussion.

We define the connectivity problem as a situation
where a desirable (and benign) application cannot
traverse a middlebox. We believe that the problem
occurs mostly because benign applications fail the
owner test (false negative), as middleboxes are
overzealous in blocking malicious applications. The
owner test is also very important to network security
because errors in this test may result in (1) malicious or
undesirable applications passing middleboxes (false
positive) or (2) incorrect auxiliary tests being applied
to packets, resulting in false negatives and false
positives. For these reasons, this paper (and middlebox
traversal problems in general) focuses on the owner
test. Our goal is to satisfy the following requirement:

Authorized applications' traffic must pass the owner
test and unauthorized traffic must not.

Note that the owner test alone does not define the
fate of a packet. The packet may fail a test before or
after the owner test. Also, note that the problem is
defined both from application and network security
perspectives. Therefore, our goal is to develop a
mechanism that helps applications to traverse
middleboxes and helps (or complements) middleboxes
with the owner test.

3. Owner Binding

To perform the owner test, a middlebox must

know whether the packet under scrutiny is for an
authorized application or not. In addition, knowing the
sender/receiver applications of authorized packets is
essential for logging and for performing further
application specific tests (i.e. auxiliary tests in figure 1).
Given a packet p, we define the owner binding OBM(p)
as the mapping function of a middlebox M such that

otherwisenull

MtraversetoauthorizedisAif

pofAnapplicatioreceiversender

pOBM

,

,/

)(

Note that the owner test problem becomes trivial
once we can decide the owner binding. If OBM(p)
returns null, the packet p fails the owner test at M. If an
authorized application A is returned, the packet p
passes the owner test and is sent to the auxiliary test for
A, if any. Thus, an error-free owner binding is the
strongest prerequisite for an error-free owner test.
Unfortunately, the owner binding is not easy to do
because packets generally do not convey information
about their source/destination applications. Almost
every middlebox uses port numbers to bind packets to
their owner applications. For example, middleboxes
often consider packets with port 80 as Web traffic.
However, a port number is at most a hint to an
application s identity because it is a shared resource
used by any application with the appropriate privileges.
Some P2P file sharing systems use port 80 and wrap
their traffic in HTTP messages to deceive middleboxes.
We may regard that these systems exploit inherent
errors in using port numbers for the owner binding.
Recognizing this problem, recent middleboxes [6]
investigate payloads and drop packets if their traffic
does not follow normal web semantics. Such
middleboxes use both port number and content
investigation for the owner binding. However, this type
of testing cannot be perfect and may not even be

Mid-BoxMid-Box

XRAY
Agent

XRAY
Agent

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

Reg
App

Reg
App

Mid-BoxMid-Box

XRAY
Agent

XRAY
Agent

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

XRAY
App

Reg
App
Reg
App

Reg
App
Reg
App

Figure 2: XRAY topology. Middleboxes trust their XRAY agents and allow packets to/from the agents. XRAY agents
relay traffic for applications the network administrator authorizes. Non-XRAY applications may or may not traverse
their middleboxes using other mechanisms.

possible for dynamic applications whose traffic cannot
be understood by peeking at payloads.

4. Architecture

Figure 2 shows a typical topology of XRAY. Each
middlebox trusts one or more XRAY agents of the
network it protects and bypasses some tests for packets
addressed to/from them. Each XRAY agent is assigned
a set of authorized applications and relays traffic for
them but drops for others. To use XRAY,
organizations must add or change a few middlebox
rules but need not change middleboxes.

Figure 3 shows XRAY components and their
interactions. The figure also shows how XRAY fits in
the packet flow model of §2. A middlebox filters or
passes ordinary packets using various tests as
explained in §2. However, it performs only the
application neutral test for packets to/from an XRAY
agent and delegates the remaining tests to the agent.
An XRAY agent has a list of authorized applications
that can communicate over its middlebox. Since the
middlebox and the XRAY agent collectively enforce
the security policy of the network, the list must be
considered as a part of middlebox rules. The XRAY
library reports, via XRAY commands, its XRAY agent
about the application s activities such as listening on a
socket, trying to connect a socket to a server outside its
network, and closing a socket. Using this information
and XRAY commands from remote sites, the agent
dynamically creates (and deletes) relay points for the
application as needed and optional plug-ins that the
administrator defines for that application. Plug-ins can
be used for application specific tests or logging. To
make sure that only authorized applications can have
relay points and accompanied plug-ins, XRAY uses
strong security mechanisms for XRAY command

exchanges. Strong security mechanisms also protect
each relay point so that only intended application or the
next hop can communicate through it. Inbound packets
for an authorized application (1) undergo the
application-neutral test at the middlebox, (2) are
authenticated and integrity checked by the key
protecting the relay point, (3) and undergo auxiliary
tests defined by plug-ins attached to the relay point.
The relay point, plug-ins, and the middlebox s
application-neutral tests check the outbound packets, in
that order. Note that a network can use XRAY and
other traversal mechanisms together. In this case,
traffic for XRAY-enabled applications (or claim-to-be)
is controlled by the XRAY mechanism, while others
are controlled by their mechanisms.

XRAY provides many benefits; either as the direct
result of using the relay mechanism or those connected
to its design:

Correct owner test. It is very difficult for a
middlebox alone to achieve a correct owner test
especially when applications use dynamic ports.
XRAY relays packets only for the intended
application via a relay point unless an attacker breaks
the security mechanism protecting the relay point.
Therefore, the XRAY agent achieves a practically
error-free owner binding. This guarantees a correct
owner test. Unauthorized application cannot pass the
owner test without knowing the address of a relay
point for an authorized application and breaking the
security mechanism protecting the relay point.

Complementing middleboxes. Not every
middlebox provides all the tests of figure 1. For
instance, most packet filtering and stateful
middleboxes lack auxiliary tests. Organizations can
complement such middleboxes by adding plug-ins to
XRAY for selected applications without any change
to middleboxes.

App Neutral
Test

Owner
Test

Aux
Test

Aux
Test...

XRAY agentMiddlebox

XRAY
lib

Application

XRAY calls

XRAY
application

Relay
Point

Plug-in

Control
Module

allowed
apps

XRAY
cmd

Non- XRAY
application

Plug-in...XRAY
cmd

App Neutral
Test

Owner
Test

Aux
Test

Aux
Test...

XRAY agentMiddlebox

XRAY
lib

Application

XRAY calls

XRAY
application

Relay
Point
Relay
Point

Plug-inPlug-in

Control
Module

allowed
apps

XRAY
cmd

Non- XRAY
application
Non- XRAY
application

Plug-inPlug-in...XRAY
cmd

Figure 3: XRAY components. XRAY consists of the XRAY agent and the XRAY library. The XRAY agent is a
daemon process running near its middlebox machine. Applications become XRAY-enabled by linking with the XRAY
library. XRAY-enabled applications use XRAY calls instead of Berkeley socket calls.

Tussle compromised. Relay points terminate
security associations as well as transport connections.
This hop-by-hop security provides each agent full
access to payloads so that they can inspect traffic. On
the other hand, applications can protect their contents
from being observed or modified by other than
relaying agents. Clearly, this approach is not ideal
for applications because middleboxes have full
access to payload, meaning applications loose some
end-to-end security. However, middleboxes have the
power of arbitration and may completely block
applications when they cannot get information from
packets.

Flexible control. XRAY uses X.509 certificates to
authenticate and authorize applications. This means
that XRAY is very flexible and can enforce various
security policies. For example, XRAY can
differentiate versions or implementations of an
application. If a vendor s implementation of an
application turns out to be vulnerable to a dangerous
attack, then it can be given a different certificate
from other implementations and disallowed from
communicating with the world.

Clearly, one of the biggest weaknesses of relay-
based approaches is performance. Hop-by-hop
encryption/decryption will slow down not only
connection setup but also data transfer. Packets may
have to traverse entire protocol stacks up and down in
each relaying agent. Also, there are chances that many
features such as reliability and flow control, which
underlying network already provides, must be
implemented again at a higher layer. These duplicated
functionalities may make those systems slower. Some
of these problems are inevitable costs for achieving a
secure traversal with a desired level of control over

packets, but others can be avoided or mitigated through
careful design. We will explain how XRAY mitigates
these performance problems in the following sections.

5. Connection Procedure

With XRAY, applications call XRAY functions.
The call sequence is the same as with a Berkeley
socket. For instance, a server creates a TCP socket,
binds it to an address, makes it passive, and accepts
connections from clients. A client creates a TCP socket,
optionally binds it to an address, and connects it to a
server. The server and client exchange data through the
established connection. This section explains how
XRAY connections are established and data are
transferred over middleboxes as responses to XRAY
calls from applications.

5.1. Server binding

In order to be able to accept connections from
outside, server sockets behind a middlebox must be
locally bound, registered to the XRAY agent of its
network, and officially bound.

Local binding is just the regular process of binding
a socket to an address. Through the local binding, an
(IP, port) pair, called the local address, is assigned to
the socket.

Since inbound connections are arranged by the
XRAY agent of the network, enough information about
a server socket must be kept in it. The registration
process provides necessary information to the agent.
After a server socket is bound to a local address, the
server s XRAY library sends a registration request
with the local address and the type of the socket. After

authentication/authorization and the official bind
(explained shortly), the agent records the information
sent by the library and other information that it collects
from the official binding process.

Official binding is the process of assigning the
official address, public/globally unique address, to a
server socket. This is necessary to support server
sockets locally bound to private addresses. When the
agent receives a registration request with a private
local address, it finds a public address and leases the
address to the server socket. This leased address
becomes the official address of the socket. Of course, if
the local address is public, then the local address
becomes the official address without address leasing.
As a successful response to the registration request, the
agent replies with the official address.

Now that a socket could have two addresses: local
and official addresses, while Berkeley socket API
allows only one per socket, what address shall be
known to the application? The answer is the official
address as its name implies. When the application asks
(by calling getsockname) for the address that an
XRAY socket is bound to, the library returns the
official address instead of the local (real) address.

After the binding process, a server socket can
become locally bound, half bound, or fully bound. A
socket is in the locally bound state if it is locally bound
to a private address but could not lease a public official
address because its XRAY agent is not available at
binding time. Sockets in this state can accept
connections that are possible without XRAY s help. A
fully bound socket has a public official address (either
leased or not) and is successfully registered to its
XRAY agent. Sockets in this state can benefit from
XRAY service. Both intra and inter network
connections are possible.

A half bound socket occurs when registration with
the agent is not possible or cancelled, but a global
address is assigned. This happens when the agent is not
available at the time of binding, but the socket s local
address (and therefore official address) is public. A
socket also becomes half bound when a socket was
fully bound, but later it is deleted from the agent
because of agent or network failure. As with locally
bound sockets, sockets in this state can only accept
connections that do not require XRAY service.
However, they can become fully bound whenever the
agent or the network recovers from the failure. Sockets
in the half bound state periodically try to become fully
bound. Note that locally bound sockets cannot be
upgraded to the fully bound state because official
addresses would be changed as the result of the
upgrade.

5.2. Connection setup

This section explains how a client makes a
connection, over middleboxes, to a server registered to
its XRAY agent through the process explained in §5.1.
We also assume that the client knows the official
address of the server socket via an out-of-band
mechanism. First, we explain how a client behind a
middlebox makes a TCP connection to a server behind
a different middlebox. This is the most complex and
hardest situation. Connections for simpler cases are
similar with some steps omitted. For UDP
communications, a very similar procedure is performed
when the application tries to send UDP data, by calling
XRAY_send or XRAY_sendto, to a peer for the first
time or after a certain inactive period. The following
steps establish a connection:
(1) The client application calls XRAY_connect with

server s official address.
(2) The client s XRAY library makes a TCP

connection to the agent of the client s network (the
client agent), does mutual authentication,
establishes secret keys for further communications,
and asks for a connection to the server. If a non-
blocking connect was called, then the library
issues a non-blocking connect to the agent and
returns immediately. The library closely watches
network events to continue remaining processes as
part of other XRAY calls such as XRAY_select
and XRAY_connect for other sockets.

(3) The client agent checks if the client is authorized
to make outbound connections. If allowed, it
makes a secure TCP connection to the agent of the
server network (the server agent) and asks for a
connection on behalf of the client.

(4) The server agent checks if the server is authorized
to accept connections from outside the network.
Then it creates a relay point and informs the client
agent that it can make a connection to the relay
point. The relay point is actually two sockets, one
for connection from the client and the other for a
connection to the server. Those sockets are
associated with the certificates of the client agent
and the server, respectively, so that no one else
can communicate via them. If plug-ins are defined
for the server, the agent attaches them to the relay
point. These plug-ins could be auxiliary tests for
the server, specialized log functions, etc.

(5) The client agent creates a relay point and plug-ins
in the same way as the server agent did and
notifies the client to connect to the relay point.

(6) Overlay links three in this case: client-to-client
agent, client agent-to-server agent, and server
agent-to-server are established in parallel. All

links are authenticated and checked to see if their
intended peers are connected.

(7) Client and server libraries send acknowledgments
to each other. Upon receiving an acknowledgment,
each party knows the end-to-end channel was
successfully established. At this time the client
library notifies the client application that the
connection has been established by returning from
a blocking XRAY_connect call or by returning
the corresponding file descriptor as write ready for
XRAY_select for a non-blocking call. The
library on the server side queues the connection so
that it may be returned when the application calls
XRAY_accept.
XRAY uses various techniques from our previous

systems [10] [16]. For example, if an agent is running
on a middlebox machine, it uses CODO techniques to
reserve addresses, if necessary, and dynamically create
pinholes for the relay points. If an agent is deployed
outside of the server s network and not allowed to
make a connection to the server, it instead uses the
GCB technique to let the server make a connection to
the relay point.

The end-to-end acknowledgement in step (7) may
seem unnecessary because the application can send
data as soon as the overlay link is attached to the next
hop. If one or more intermediate links have not been
established yet, the data can be buffered at the relay
points and may be pushed later. We did not take this
approach in hopes to reduce application s frustration.
Connection failures generally involve human errors
such as mistyping the address or bad network
configurations, while data transfer failures after the
connection establishment are mostly caused by
network errors and happen much less frequently.
Therefore, most applications are prepared to handle
connection errors but not well prepared for transfer
errors. If XRAY reports successful connection with
some intermediate links not finished yet, applications
will see more data transfer errors not necessarily
because of network errors.

Connection establishment within a private network
also needs help from XRAY agents. A client within the
same private network as a server cannot make a direct
connection with the (leased) official address of the
server. In this case, the XRAY agent of the private
network replies to client s connection request with the
server s local address so that the client can make a
direct connection to the server. No relay points are
created for intra network connections.

5.3. Data communication

The result of the connection setup process is a
communication channel between a client and a server

composed of one or more overlay links connected
together via relay points. Because data are encrypted
and decrypted by each hop, relay points have the full
access to the contents, while still providing appropriate
level of end-to-end protection and secrecy to
applications.

Each relay point can have site-specific and
application-specific plug-ins attached to it. These plug-
ins form a chain to be executed. Data arriving at a relay
point are decrypted, checked by each plug-in in order,
encrypted using the secret key for the next link, and
forwarded to the next hop.

XRAY provides the application transparency for
underlying mechanisms not only for connection setup
but also for data communication. We use block ciphers
to secure each overlay link. It is not trivial to provide
the stream-based semantics of TCP over record-based
communication of block ciphers. For example,
select must not return read ready when the network
buffer has a partial record that cannot be decrypted.
Instead, the application should be informed that it can
read something from the network only when full
records have been received and successfully decrypted.
Similarly, select should not return write ready when
the network buffer has small space that can hold only a
partial record. To provide the application TCP s stream
semantics, XRAY has a buffering mechanism that
translates stream (of clear text) to record based
communication (of cipher text), and vice versa.

6. Fault tolerance

Successful connection depends on the reliability of
XRAY agents. Nevertheless, applications should
continue to work with a limited ability in the event of
agent failure. For example, when an agent is down,
connections that do not require the service from the
agent should continue working.

When an agent is down, XRAY tries to provide as
much service as possible. The local bound and half
bound status explained in §5.1 enables server sockets
to continue to be able to accept intra network
connections. If a client s XRAY library cannot contact
an agent, it tries a direct connection to the server as if
the agent were not needed.

If an agent recovers from its failure, sockets that
were affected by the failure should become fully
functional. To achieve this goal, we just need to
upgrade half bound sockets to fully bound status so
that they can accept connections from outside. The
XRAY library periodically tries to contact the failed
local agent. If successful, it registers the information of
sockets to the agent and upgrades them to fully bound
status.

 (a) (b)

Figure 4: XRAY performance (a) connection time (b) data transfer time. X-axis represents each experiment and
Y-axis shows times in micro second for each experiment. The mean connection time of XRAY is 26,864 with the
standard deviation of 1,832, while the average for OpenSSL is 16,166 with the standard deviation of 484. For data
transfer, the mean time of XRAY is 903,374 with the standard deviation of 8,203, while the mean time for OpenSSL is
498,273 with the standard deviation of 17,440.

7. Implementation

The XRAY library is implemented in C/C++ as a
layer between the application and the kernel.
Applications use XRAY socket calls to create an
XRAY socket, bind it to an address, connect to a server,
etc. In addition to socket calls, the library provides
some file system calls so that applications may
duplicate socket descriptors, make a socket non-
blocking, and multiplex multiple file descriptors,
including XRAY sockets. It also has a few functions
for process control, such as fork and execve. These
are mainly for inheriting open sockets to child
processes. All XRAY calls have the same APIs as their
regular counterparts. This strategy is intended to
facilitate application programming and enable
dynamically linked applications to use XRAY without
recompilation.

8. Performance measurement

To measure the performance, we set up two
private networks. Each network has a Linux NAT box
with two network interfaces as a headnode. 100Mbps
Ethernet connects nodes within each private network.
A departmental network (100Mbps) connects the two
private networks. Neither inbound nor outbound
connections are allowed in the private networks. Every
machine has two 2.4 GHz CPUs with 512KB cache
and 2GB RAM.

Using a test suite that we wrote, we measured

connection setup and data transfer times. In our test
suite, a client makes a connection to a server and then
sends 100 messages of 10K bytes long back-to-back.
The server echoes back to the client. Upon receiving
all echoes, the client tears down the connection. We
inserted random delays between connections. Actual
delay was determined using a Poisson process with a
mean () of 3 seconds. We used X.509 (RSA) public
key for authentication and session keys establishment.
SHA-1 and 3DES were used for integrity and
encryption, respectively, of XRAY commands and
application data. In order to understand the overhead of
XRAY, we did the same experiments with OpenSSL
[7] with NATs manually configured to allow traffic
between two networks. For fair comparison, we
configured OpenSSL to use the same mechanisms for
authentication, encryption/decryption, and integrity.
Since XRAY provides mutual authentication, we also
configured OpenSSL clients to authenticate servers.

Figure 4 (a) shows the results for connection setup.
XRAY connections take 27 msec on average, which is
1.67 times slower than regular OpenSSL connections.
For each XRAY connection, five secure TCP
connections are made in this experiment: two for
XRAY command exchanges between the client and the
client agent and between the client agent and the server
agent, respectively; three overlay links for end-to-end
channel between the client, the client agent, the server
agent, and the server. Considering the number of
connections and interactions in XRAY, connection
times are surprisingly short. We determine that two

 (a) (b)

Figure 5: Concurrent connection setup. (a) The X-axis represents socket descriptors that non-blocking
connections were issued with. The Y-axis shows the times of each connection issued (x

mark) and finished (dot).
The time difference between the first connection issued and the last connection finished is 1.325 seconds. (b) The X-
axis shows the number of concurrent connections issued. The Y-axis shows the total time to set up multiple
connections.

factors help XRAY s connection performance. First,
the parallel connection setup of end-to-end channel (i.e.
three connections in this case) reduces the overall
connection time. Second, XRAY uses the session
resumption [8] to avoid the expensive public key
mechanism. XRAY entities cache and reuse security
sessions to communicate with others they have recently
talked with. Since XRAY agents are commonly
contacted entities, session reuse is often possible. Also,
note that all connections for end-to-end channel can be
established without using a public key mechanism
because all entities must have talked with each other
for exchanging XRAY commands. Figure 4 (b) shows
the data transfer results. The figure shows that XRAY
data transfer is 1.81 times slower than the direct
OpenSSL communication. We believe that this
overhead is reasonable considering the relaying and
encryption/decryption operations by two agents.

To see how XRAY scales, we also tested
concurrent connection setup. Figure 5 (a) shows that
multiple connections can be established concurrently
rather than in a serial manner. In this test, a client in a
private network issued 50 concurrent connections (i.e.
non-blocking connections) to a server in another
private network and recorded the times of connection
issued and finished for each socket. The figure shows
that multiple connections are established at the same
time rather than one-by-one. Some connections (e.g.
45th, 46th, and 49th) finished earlier than those that
started earlier. Figure 5 (a) also shows that all 50
connections were finished within 1.325 seconds, which

is only 29 times as slow as a single connection setup
using the same test program, instead of an expected 50
times for serial establishment. Figure 5 (b) shows how
the total time varies as the number of concurrent
connections increase. In this test, a client
simultaneously issued up to 200 non-blocking
connections to a single server in a different private
network. The client issued one connection to measure
the time of single connection setup, and then issued
two connections in non-blocking fashion to measure
the time to setup two connections, and so on. The
result shows that it took about 4.7 seconds to establish
200 connections, which is only 78 times as slow as a
single connection setup. Those results show that both
the XRAY library and agent can handle many
concurrent connections very well and that XRAY
mitigates performance overheads by interleaving
operations.

9. Related work

Many middlebox traversal systems have been
proposed or developed. Unlike XRAY and our
previous work CODO (Cooperative On-Demand
Opening) [16], previous research mainly focuses on
how to enable application traversal of middleboxes,
with little attention to the security of the network.
CODO dynamically adds and removes owner test rules
for authorized applications. CODO has many
characteristics in common with XRAY. CODO helps
applications communicate with the world as well as

helps middleboxes to perform quality owner test; it
controls both inbound and outbound traffic; it uses
strong security mechanisms to protect unauthorized
applications from having owner test rules created for
them. CODO is more efficient than XRAY because
with CODO applications communicate directly through
holes made at middleboxes. However, the owner test
CODO constructs is less secure than the owner test
XRAY constructs. With CODO, attackers can cause
owner test false positives using address spoofing,
which is impossible with XRAY. CODO also has an
additional requirement that middleboxes provide an
API for dynamic control. Therefore, XRAY supports
more organizations and provides more secure traversal
while CODO provides secure and efficient traversal.

SOCKS [14] is also similar to XRAY. It enables
communications through a middlebox by a proxy that
relays connections. The proxy is application-
independent and can be configured to use strong
security mechanisms to authenticate applications.
However, SOCKS does not have the concept of
address leasing to server sockets (§5.1) and generally
does not support private networks. SOCKS is also
designed only for client-server applications and cannot
support applications such as P2P and the Grid. In
SOCKS, each application must act as a client or a
server, but not both. A client application may accept
connections over middleboxes. However, these passive
connections must be secondary connections and a part
of an active session that is initiated by an active
primary connection. FTP is a good example. A
SOCKS-enabled FPT client can establish an active
connection (the control channel) to an FTP server
behind a middlebox and then accept a passive
connection (the data channel) from the same server.
However, with SOCKS, a client application cannot
have an independent passive socket to accept
connections from arbitrary endpoints.

Other middlebox traversal mechanisms both
middleware and fundamental approaches are reviewed
in [10] and [16].

10. Conclusion

In this paper, we discussed middlebox traversal
problem in a broader and formalized context of
network security and presented a relay-based
middlebox traversal system, called XRAY. XRAY is a
middlebox-friendly system, which helps not only
applications to communicate with the world but also
middleboxes to better filter traffic. XRAY controls
both inbound and outbound traffic in a secure manner.
Middleboxes can achieve a practically error-free owner
binding and owner test. Additionally, the conflict of
interests between applications and middleboxes can be

appropriately addressed with XRAY. Our experiments
also showed that XRAY provides such benefits at
reasonable performance overheads.

References

[1] K. Egevang, P. Francis, The IP Network Address
Translator (NAT), IETF RFC1631 May 1994.

[2] I. Foster, C Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations, Intl.
Journal of Supercomputing Applications 2001.

[3] M. S. Blumenthal and D. D. Clark. Rethinking the
design of the Internet: The end-to-end argument vs. the brave
new world . ACM Transactions on Internet Technology, Vol.
1, No. 1, 2001.

[4] Globus web site, http://www.globus.org

[5] Condor web site, http://www.cs.wisc.edu/condor

[6] Checkpoint web site, http://www.checkpoint.com

[7] OpenSSL web site, http://www.openssl.org

[8] T. Dierks, C. Allen, The TLS Protocol, IETF RFC
2246, Jan. 1999.

[9] V. Paxson, Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23/24), Dec.
1999.

[10] S. Son, M. Livny, Recovering Internet Symmetry in
Distributed Computing. Proceedings of the 3rd
International Symposium on Cluster Computing and the Grid,
Tokyo, Japan, May 2003.

[11] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy,
STUN

Simple Traversal of User Data Gram (UDP)
Through Network Address Translators (NATs), IETF RFC
3489, March 2003.

[12] J. Rosenberg, R. Mahy, C. Huitema, Traversal Using
Relay NAT (TURN), Internet-Draft, July 2004.

[13] P. Srisuresh et al., Middlebox Communication
Architecture and Framework, IETF RFC 3303, Aug. 2002.

[14] M. Leech, M.Ganis, Y. Lee, R. Kuris, D. Koblas, L.
Jones, SOCKS Protocol Version 5, IETF RFC 1928,
March 1996.

[15] M. Borella, J. Lo, D. Grabelsky, G. Montenegro,
Realm Specific IP: Framework , IETF RFC 3102, July 2000.

[16] S. Son, B. Allcock, M. Livny, CODO: Firewall
Traversal by Cooperative On-Demand Opening, to appear at
14th HPDC, Research Triangle Park, NC, July, 2005.

[17] C. Kaufman, R Perlman and M. Speciner, Network
Security: Private communication in a Public World, 2nd

Edition, Prentice Hall, Chapter 23. pp 585-594.

http://www.globus.org
http://www.cs.wisc.edu/condor
http://www.checkpoint.com
http://www.openssl.org

